
Problem Set 7 – due November 5th
Please see the course website for homework policy.

Problem 1 Fix a positive integer d; in this problem we will study d-regular graphs on n vertices.
Let A(G) be the adjacency matrix and λi its eigenvalues. On the previous problem set, we proved

the following: For any ε > 0, there is an N such that, if n > N , then max(|λ2|, |λn|) >
√
d− ε. In

this problem, we will improve
√
d to

√
2d− 1. Fix c > 0.

(a) Let B = A2− (d− (1+c)/2). Show that Tr(B2) ≥ n(d2−d+(1+c)2/4). When does equality
occur?

For any square matrix B, we have Tr(B2) =
∑

i,j BijBji. The diagonal elements of B are each

d− (d− (1 + c)/2) = (1 + c)/2, contributing n(1 + c)2/4. If the graph G contains no quadrilaterals,
then the off diagonal entries of each row of A contain d2 − d ones and all the others are zeroes, so
these contribute n(d2 − d) and we have equality. In general, the off diagonal entries of each row of
A are nonnegative integers summing to d2 − d. If xi are nonnegative integers, then

∑
x2i ≥

∑
xi,

with equality if and only if each xi is 0 or 1. So we obtain the bound, and we have equality exactly
when none of the off diagonal entries are greater than 1, which is when there are no quadrilaterals.

Let g =
√

2d− 1− c.
(b) Suppose that all the eigenvalues of A, other than d, are in (−g, g). Show that Tr(B2) ≤

(d2 − d+ (1 + c)/2)2 + (n− 1)(d− (1 + c)/2)2.
Let the eigenvalues of A be λi. So Tr(B2) =

∑
(λ2i − (d − (1 + c)/2))2. The λ1 = d term

contributes (d2 − (d − (1 + c)/2))2. When λ is in (−g, g), the quantity (λ2 − (d − (1 + c)/2)) is
between −(d− (1 + c)/2) and (d− (1 + c)/2) so those terms contribute at most (d− (1 + c)/2)2.

(c) Show that the above inequalities imply a finite upper bound for n (dependent on c and d).
Combining the two inequalities above, we have

n(d2 − d+ (1 + c)2/4) ≤ (d2 − d+ (1 + c)/2)2 + (n− 1)(d− (1 + c)/2)2.

Algebraic rearrangement gives:

n ≤ d((d− 1)2 + c)

c
.

Problem 2 Let G be a graph. We define a double of G to be a graph DG as follows: Each vertex
v in G gives two distinct vertices v1 and v2 in DG. If there is an edge (v, w) in G, then either there
are edges (v1, w1) and (v2, w2), or else there are edges (v1, w2) and (v2, w1) (but not both). There
are no other edges in DG.

(a) Show that every eigenvalue of A(G) is an eigenvalue of A(DG).
Let x be an eigenvector of A(G) with eigenvalue λ. Define Dx to be the vector with Dx(v1) =

Dx(v2) = x(v) for every vertex v in G. Then A(DG)(Dx) = λDx.
(b) Define a matrix B as follows: there is a row and a column of B for every vertex of G. For

two vertices v and w of G, we have Bvw = 0 if there is no edge (v, w) in G; we have Bvw = 1 if
edges (v1, w1) and (v2, w2) occur in DG; and we have Bvw = −1 if edges (v1, w2) and (v2, w1) occur
in DG. Show that every eigenvalue of B is an eigenvalue of A(DG).

Let W be the vector space of functions on DG which obey x(v1) = −x(v2). Then A(DG) takes
W to itself and the matrix B gives the action of A(DG) on W .

Problem 3 Let A be an n×n symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ · · ·λn. Let B
be the upper left m×m submatrix, with eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µn.

(a) Show that µ1 ≤ λ1.
Let w1 be the eigenvector of B corresponding to µ1. Then

wT
1 Aw1

wT
1 w1

= µ1



so, as λ1 is the maximal value of the Raleigh quotient, we have λ1 ≥ µ1.
(b) Let ~vi be the eigenvectors of A. Show that there is some vector ~u which is supported in the

first m-coordinates and is in the span of ~v1, ~v2, . . . , ~vn−m, ~v1+n−m. Use this fact to show that
µ1 ≥ λ1+n−m.

Following the hint, the span of ~v1, ~v2, . . . , ~vn−m, ~v1+n−m has dimension n−m+ 1 The space of
vectors supported on the first m coordinates has dimension m. So these two spaces have nonzero
intersection; let u be in this intersection. Then

uTBu

uTu
=
uTAu

uTu
≥ λn−m+1

Since µ1 is the largest value of the Raleigh quotient for B, we have µ1 ≥ λn−m+1.
(c) If we repeat these arguments for µm, what bounds do we get?

λm ≥ µm ≥ λn.
(d) Write C for the upper left (m − k + 1) × (m − k + 1) submatrix and γi for its eigenvalues.

Show that we can change bases, without changing the eigenvalues of A and B, so that µk = γ1.
Deduce that µk ≥ λk+n−m.

Let the matrix S diagonalizeB. More specifically, we want SBS−1 = diag(µk, µk+1, . . . , µm, µ1, . . . , µk−1).

So
(
S 0
0 Id

)
A
(
S 0
0 Id

)−1
has upper left block diag(µk, µk+1, . . . , µm, µ1, . . . , µk−1). We have not changed

the eigenvalues of A or of the upper left block of B.
Now, µk = γ1. Applying part (b) to the matrices C and A, we have γ1 ≥ λn−(m−k+1)+1 so

µk ≥ λk+n−m.
(e) Write D for the upper left k × k submatrix and δi for its eigenvalues. Show that we can

change bases, without changing the eigenvalues of A and B, so that µk = δk. Deduce that µk ≤ λk.
We repeat the previous argument, this time taking T to diagonalizeB with TBT−1 = diag(µ1, µ2, . . . , µm)

and considering
(
T 0
0 Id

)
A
(
T 0
0 Id

)−1
. Using the lower bound from (c),

δk ≥ λk and so µk ≥ λk.
(f) The above results give some very crude restrictions on subgraphs of Ramanujan graphs. For

example, suppose that G is a 10 regular graph with all eigenvalues of the adjacency matrix other
than λ1 in [−6, 6]. Show that G does not contain two seven element subsets X and Y so that there
are edges joining every x ∈ X to every y ∈ Y , and so that there are no edges within X or within
Y .

FIX THIS


