PROBLEM SET 7 – DUE NOVEMBER 5TH

Please see the course website for homework policy.

Problem 1 Fix a positive integer d; in this problem we will study d-regular graphs on n vertices. Let A(G) be the adjacency matrix and λ_i its eigenvalues. On the previous problem set, we proved the following: For any $\epsilon > 0$, there is an N such that, if n > N, then $\max(|\lambda_2|, |\lambda_n|) > \sqrt{d} - \epsilon$. In this problem, we will improve \sqrt{d} to $\sqrt{2d-1}$. Fix c > 0.

(a) Let $B = A^2 - (d - (1 + c)/2)$. Show that $Tr(B^2) \ge n(d^2 - d + (1 + c)^2/4)$. When does equality occur?

For any square matrix B, we have $Tr(B^2) = \sum_{i,j} B_{ij}B_{ji}$. The diagonal elements of B are each d - (d - (1 + c)/2) = (1 + c)/2, contributing $n(1 + c)^2/4$. If the graph G contains no quadrilaterals, then the off diagonal entries of each row of A contain $d^2 - d$ ones and all the others are zeroes, so these contribute $n(d^2 - d)$ and we have equality. In general, the off diagonal entries of each row of A are nonnegative integers summing to $d^2 - d$. If x_i are nonnegative integers, then $\sum x_i^2 \geq \sum x_i$, with equality if and only if each x_i is 0 or 1. So we obtain the bound, and we have equality exactly when none of the off diagonal entries are greater than 1, which is when there are no quadrilaterals.

Let $q = \sqrt{2d - 1 - c}$.

(b) Suppose that all the eigenvalues of A, other than d, are in (-g,g). Show that $Tr(B^2) \leq (d^2 - d + (1+c)/2)^2 + (n-1)(d - (1+c)/2)^2$.

Let the eigenvalues of A be λ_i . So $Tr(B^2) = \sum (\lambda_i^2 - (d - (1+c)/2))^2$. The $\lambda_1 = d$ term contributes $(d^2 - (d - (1+c)/2))^2$. When λ is in (-g,g), the quantity $(\lambda^2 - (d - (1+c)/2))$ is between -(d - (1+c)/2) and (d - (1+c)/2) so those terms contribute at most $(d - (1+c)/2)^2$.

(c) Show that the above inequalities imply a finite upper bound for n (dependent on c and d).

Combining the two inequalities above, we have

$$n(d^2 - d + (1+c)^2/4) \le (d^2 - d + (1+c)/2)^2 + (n-1)(d - (1+c)/2)^2.$$

Algebraic rearrangement gives:

$$n \le \frac{d((d-1)^2 + c)}{c}.$$

Problem 2 Let G be a graph. We define a double of G to be a graph DG as follows: Each vertex v in G gives two distinct vertices v_1 and v_2 in DG. If there is an edge (v, w) in G, then either there are edges (v_1, w_1) and (v_2, w_2) , or else there are edges (v_1, w_2) and (v_2, w_1) (but not both). There are no other edges in DG.

(a) Show that every eigenvalue of A(G) is an eigenvalue of A(DG).

Let x be an eigenvector of A(G) with eigenvalue λ . Define Dx to be the vector with $Dx(v_1) = Dx(v_2) = x(v)$ for every vertex v in G. Then $A(DG)(Dx) = \lambda Dx$.

(b) Define a matrix B as follows: there is a row and a column of B for every vertex of G. For two vertices v and w of G, we have $B_{vw} = 0$ if there is no edge (v, w) in G; we have $B_{vw} = 1$ if edges (v_1, w_1) and (v_2, w_2) occur in DG; and we have $B_{vw} = -1$ if edges (v_1, w_2) and (v_2, w_1) occur in DG. Show that every eigenvalue of B is an eigenvalue of A(DG).

Let W be the vector space of functions on DG which obey $x(v_1) = -x(v_2)$. Then A(DG) takes W to itself and the matrix B gives the action of A(DG) on W.

Problem 3 Let A be an $n \times n$ symmetric matrix with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \cdots \lambda_n$. Let B be the upper left $m \times m$ submatrix, with eigenvalues $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_n$.

(a) Show that $\mu_1 \leq \lambda_1$.

Let w_1 be the eigenvector of B corresponding to μ_1 . Then

$$\frac{w_1^T A w_1}{w_1^T w_1} = \mu_1$$

so, as λ_1 is the maximal value of the Raleigh quotient, we have $\lambda_1 \geq \mu_1$.

(b) Let \vec{v}_i be the eigenvectors of A. Show that there is some vector \vec{u} which is supported in the first m-coordinates and is in the span of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-m}, \vec{v}_{1+n-m}$. Use this fact to show that $\mu_1 \geq \lambda_{1+n-m}$.

Following the hint, the span of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{n-m}, \vec{v}_{1+n-m}$ has dimension n-m+1 The space of vectors supported on the first m coordinates has dimension m. So these two spaces have nonzero intersection; let u be in this intersection. Then

$$\frac{u^T B u}{u^T u} = \frac{u^T A u}{u^T u} \ge \lambda_{n-m+1}$$

Since μ_1 is the largest value of the Raleigh quotient for B, we have $\mu_1 \ge \lambda_{n-m+1}$.

(c) If we repeat these arguments for μ_m , what bounds do we get?

$$\lambda_m \ge \mu_m \ge \lambda_n.$$

(d) Write C for the upper left $(m - k + 1) \times (m - k + 1)$ submatrix and γ_i for its eigenvalues. Show that we can change bases, without changing the eigenvalues of A and B, so that $\mu_k = \gamma_1$. Deduce that $\mu_k \geq \lambda_{k+n-m}$.

Let the matrix S diagonalize B. More specifically, we want $SBS^{-1} = \text{diag}(\mu_k, \mu_{k+1}, \dots, \mu_m, \mu_1, \dots, \mu_{k-1})$. So $\begin{pmatrix} S & 0 \\ 0 & \text{Id} \end{pmatrix} A \begin{pmatrix} S & 0 \\ 0 & \text{Id} \end{pmatrix}^{-1}$ has upper left block $\text{diag}(\mu_k, \mu_{k+1}, \dots, \mu_m, \mu_1, \dots, \mu_{k-1})$. We have not changed the eigenvalues of A or of the upper left block of B.

Now, $\mu_k = \gamma_1$. Applying part (b) to the matrices C and A, we have $\gamma_1 \ge \lambda_{n-(m-k+1)+1}$ so $\mu_k \ge \lambda_{k+n-m}$.

(e) Write D for the upper left $k \times k$ submatrix and δ_i for its eigenvalues. Show that we can change bases, without changing the eigenvalues of A and B, so that $\mu_k = \delta_k$. Deduce that $\mu_k \leq \lambda_k$.

We repeat the previous argument, this time taking T to diagonalize B with $TBT^{-1} = \text{diag}(\mu_1, \mu_2, \dots, \mu_m)$ and considering $\begin{pmatrix} T & 0 \\ 0 & \text{Id} \end{pmatrix} A \begin{pmatrix} T & 0 \\ 0 & \text{Id} \end{pmatrix}^{-1}$. Using the lower bound from (c),

$$\delta_k \ge \lambda_k$$
 and so $\mu_k \ge \lambda_k$.

(f) The above results give some very crude restrictions on subgraphs of Ramanujan graphs. For example, suppose that G is a 10 regular graph with all eigenvalues of the adjacency matrix other than λ_1 in [-6,6]. Show that G does not contain two seven element subsets X and Y so that there are edges joining every $x \in X$ to every $y \in Y$, and so that there are no edges within X or within Y.

FIX THIS