
Solution Set 8

Problem 1 Consider a (2n+1)× (2n+1) checker board, with the corners colored black. Suppose
that we remove any black square from the board, living 4n2 + 4n squares behind. Show that the
remaining squares can be tiled with dominos. (A direct proof is probably easier than appealing to
Hall’s marriage theorem.)

Surround the hole with 4 rectangles, as shown:

There are two case: The hole is an even distance from every edge, or an odd distance from every
edge. Either way, each of these rectangles is even× odd, and thus can be tiled with dominos.

Problem 2 Let G be a graph. By definition, a perfect matching of G is a collection M of
edges of G so that every vertex of G lies on exactly one edge of M . Let (v1, v2, . . . , v2k) be a cycle
of G of even length. If M is a perfect matching of G which contains the edges (v1, v2), (v3, v4),
. . . , (v2k−1, v2k), then define the twist of M along (v1, v2, . . . , v2k) to be the perfect matching which
deletes the edges (v1, v2), (v3, v4), . . . , (v2k−1, v2k) from M and replaces them by the edges (v2, v3),
(v4, v5), . . . , (v2k−2, v2k−1), (v2k, v1).

(a) If M and M ′ are two perfect matchings of G, show that we can change M to M ′ by a sequence
of twists along various cycles of G.

Superimposing the matchings M and M ′ gives a 2-regular graph, which must be a union of cycles
and doubled edges. Twisting along the cycles changes M to M ′.

An induced cycle of G is a cycle (v1, v2, . . . , vm) so that G has no edges among the vertices vi
other than the m edges of the cycle.

(b) Prove or disprove: If M and M ′ are two perfect matchings of G, then we can change M to
M ′ by a sequence of twists along various induced cycles of G.

This is false. Consider the graph K4, which has no induced cycles of even length at all. So there
are no induced cycles to twist along, yet K4 has three matchings.

(c) Prove or disprove: If G is bipartite and M and M ′ are two perfect matchings of G, then we
can change M to M ′ by a sequence of twists along various induced cycles of G.

This is true. Let M →M1 →M2 → · · · →M ′ be a sequence of twists taking M to M ′ so that the
lengths of the cycles used for twisting are as short as possible. Suppose for the sake of contradiction
that one of these cycles is not induced; call it (v1, . . . , v2k), and that this is used in twisting Mr to
Mr+1. The assumption that it is not induced means that there is some additional edge from vi to
vj , other than the edges of the cycle. The fact that the graph is bipartite means that i 6≡ j mod 2.



Without loss of generality, let 1 ≤ i < j ≤ 2k. Then twisting along (v1, . . . , v2k) is the concatenation
of twisting along (vi, vi+1, . . . , vj−1, vj) and twisting along (vj , vj+1, . . . , v2k, v1, . . . , vi−1, vi).

Let G be a graph drawn in the plane without crossing itself. We’ll say that a cycle of G bounds
a face if there are no edges of G inside the part of R2 enclosed by that cycle.

(d) (Harder) Prove or disprove: Let G be a connected bipartite planar graph and let M and M ′

be two perfect matchings. Then we can change M to M ′ by a sequence of twists along cycles which
bound faces.

This is false. For a counterexample, look at the graph below.

There are 4 matchings of this graph, and twists join them into two pairs of two; the figure shows
two matchings which cannot be joined.

The reader who is familiar with conventions for planar graphs may notice that these matchings
can be joined if we allow twisting around the exterior face. But this doesn’t salvage the statement.
Here are two matchings which cannot be joined by twists around faces, even when the exterior face
is allowed.

Problem 3 We deal a deck of cards into 13 piles of 4. Show that it is possible to pick up one
card from each pile and have precisely one card of each rank: One ace, one deuce and so forth, up
to one king.



Define a bipartite graph G whose “black” vertices are the piles and whose “white” vertices are
the ranks of the cards, and where there is an edge from a black vertex to a white vertex if that
rank appears in that pile. So this is a 4-regular bipartite graph with 13 vertices of each kind, and
we want to show that it has a perfect matching.

Suppose otherwise. By Hall’s theorem, there is a set S of piles such that fewer than |S| different
ranks appear in S. But the set S of piles contains 4|S| cards, and each rank can occur at most 4
times, so at least |S| different ranks must occur in these piles; a contradiction.

Problem 4 Let A be a square n× n matrix. I’ll say that N is a magic square if there is some
constant N such that every row and every column1 of A sums to N . A permutation matrix is a
(0, 1) matrix where every row and every column contains exactly one 1; so a permutation matrix is
a magic square with N = 1.—

(a) Show that, if A is a magic square with nonnegative integer entries, then A is a sum of N
permutation matrices. (Hint in ROT13: Svefg gel gb fubj gung gurer vf n fvatyr crezhgngvba zngevk
P fhpu gung A− P fgvyy unf abaartngvir vagrtre ragevrf.)

We work by induction on N . The base case N = 0 is obvious.
Assume N ≥ 1. Define a bipartite graph G with 2n vertices: One for each row and each column

of A. Let there be an edge from the vertex for row i to the vertex for column j if Aij > 0. We
claim that G has a perfect matching.

Suppose otherwise. Then, by Hall’s Marriage Theorem, there is some set R of rows and a smaller
set C of columns so that the vertices indexed by R only border the columns indexed by C. Let’s
consider the sum of the Aij for i ∈ R and j ∈ C. Since Aik = 0 when i ∈ R and k 6∈ C, we have∑

i∈R
∑

j∈C Aij = N |R|. But, summing the columns first, we have
∑

j∈C
∑

i∈RAij ≤ N |C|. So

N |R| ≤ N |C|, contradicting that C is supposed to be smaller than A.
So G has a matching, and this matching corresponds to a permutaion matrix P such that the

entries of A− P are nonnegative integers. We now apply the inductive hypothesis to write A− P
as a sum of permutation matrices.

(b) Show that, if A is a magic square with nonnegative real entries, then A is a positive linear
combination of permutation matrices.

(c) (Harder) Let A be an n× n magic square with nonnegative real entries. Show that there are
(n−1)2+1 permutation matrices, P1, P2, . . . , P(n−1)2+1 so that A =

∑
ciPi with the ci nonnegative

real numbers.
I’ll first prove the easier bound of n2 − n + 1. As before, we can find a permutation matrix P

such that A− cP has nonnegative entries for sufficiently small positive c. By choosing c correctly,
we can make sure that A − cP has one fewer positive entry than A does. Repeat this to subtract
off (n− 1)2 + 1 permutation matrices; call the remainder R. So R is an n× n magic square, with
(n − 1)n + 1 entries which are zero. In particular, there must be some row of R which is entirely
0. But then the magic sum N must be zero, so R is zero, and we have written our original matrix
as a sum of (n− 1)n+ 1 permutation matrices.

In fact, the correct bound is (n−1)2 +1. My original intended proof of this was broken, but here
is a correct one. Let V be the vector space of all n× n matrices whose column and row sums are
all equal. It is easy to check that this has dimension (n− 1)2 + 1. The result follows immediately
from a result known as Cartheodroy’s lemma: Let v1, v2, . . . , vN be vectors in a vector space V of
dimension d over R. Let w be another vector in V , which is in the positive linear span of the vi.
Then w is in the positive linear span of some subset of the vi with at most d elements.

Proof: Let e be the smallest integer such that w can be written as
∑e

k=1 ckvik with the ck > 0.
We want to show that e ≤ d. Assume otherwise. Then vi1 , vi2 , . . . , vie are linearly dependent; say∑
bkvik = 0. Let j be the index for which cj/|bj | is minimized. (If bj = 0, we consider this ratio

to be ∞.) Let α be the minimal value of cj/|bj | and assume without loss of generality that bj > 0.

1We don’t impose this condition on the diagonals.



Then
e∑

k=1

(ck − αbk)vik =
∑

ckvik = w.

This has fewer nonzero terms than
∑
ckvik , and all its coefficients are nonnegative, completing the

contradiction.


