
Solution Set 9

Problem 1.(a) Let G be a directed graph with source s, sink t and edge capacities c(e). Suppose
that all the capacities c(e) are integers. Show that there is an optimal flow through G with integer
amounts of flow through every edge.

At every step of the Ford-Fulkerson algorithm, we increase or decrease the flow amount in each
edge by an integer. When the algorithm terminates, we will have an optimal integer flow.

1.(b) Let H be a bipartite graph. Construct a directed graph G, source s, sink t and some edge
capacities c(e), such that the maximal flow from s to t is equal to the maximum cardinality of any
matching of G.

Let the black vertices of H be b1, b2, . . . , bp and the white vertices be w1, w2, . . . , wq. The
vertices of G will be s, b1, b2, . . . , bp, w1, w2, . . . , wq, t. For each edge (bi, wj) of H, we will have
an edge bi −→ wj of G with capacity 1. There will also be edges s −→ bi of capacity 1 and wj −→ t
of capacity 1 for all bi and wj .

By part (a), there is an optimal integral flow. In that flow, every edge will have flow 0 or 1. Let
M be the set of edges of H which have flow 1. For any b ∈ B, the edge s −→ b has capacity 1, so
the outflow from b is at most 1 and at most 1 edge of M touches b. Similarly, for all w ∈ W , at
most one edge of M touches w. So M is a matching. This shows that the optimal flow is ≤ the
cardinality of the maximal matching, and this construction is clearly reversible to show that the
maximal matching is achieved by a flow.

Problem 2 The aim of this problem is to show an example of a graph with irrational edge weights
where the Ford-Fulkerson algorithm does not halt, nor approach the correct limit.

s

u

v

w

x

t

Our graph is shown in the image above. The capacities are as follows:

c(v, u) = c(v, w) = 1, c(x,w) =

√
5− 1

2
≈ 0.618, all other edges have c = 10.

2.(a) Compute the maximum possible flow through G. Give an example of a cut whose capacity
equals this flow.

The optimal flow is 21. It can be achieved by putting 10 on s −→ u −→ t, 10 on s −→ x −→ t
and 1 on s −→ v −→ w −→ t. A corresponding cut is achieves this is ({s, u, v}, {w, x, t}).

Define the paths p1 = (s → x → w → v → u → t), p2 = (s → v → w → x → t) and
p3 = (s→ u→ v → w → t).

2.(b) Start with the flow which is 1 on s → v → w → t. Successively increment it, as much
as possible, along p1, p2, p1, p3, . . . , with the patten repeating with period 4. Compute that first 4
flows you produce in this way and their residual graphs.

The first several flows, and the sizes of the increases, are listed below:

s→ u s→ v s→ x v → u v → w x→ w u→ t w → t x→ t amount of increase
0 1 0 0 1 0 0 1 0
0 1 τ τ 1− τ τ τ 1 0 τ
0 1 + τ τ τ 1 0 τ 1 τ τ
0 1 + τ 1 1 τ τ2 1 1 τ τ2

τ2 1 + τ 1 τ 1 τ2 1 1 + τ2 τ τ2

Some more experimentation suggests that the increases will continue τ3, τ3, τ4, τ4, τ5, τ5, τ6,
τ6, The following table shows what the corresponding flows will be. We will check later that
this is what happens:

path increase s→ u s→ v s→ x v → u v → w x→ w u→ t w → t x→ t

p1 τ2k−1 0 0 τ2k−1 τ2k−1 −τ2k−1 τ2k−1 τ2k−1 0 0
p2 τ2k−1 0 τ2k−1 0 0 +τ2k−1 −τ2k−1 0 0 τ2k−1

p1 τ2k 0 0 τ2k τ2k −τ2k τ2k τ2k 0 0
p3 τ2k τ2k 0 0 −τ2k τ2k 0 0 τ2k 0

net increase τ2k−1 0 τ2k

We have left out the totals for the other columns, because they will be less important.
The total flows along the center edges at step m will be

m v → u v → w x→ w

4k τ + τ3 + · · ·+ τ2k−1 1 τ2 + τ4 + · · ·+ τ2k

4k + 1 τ + τ3 + · · ·+ τ2k−1 + τ2k+1 1− τ2k+1 τ2 + τ4 + · · ·+ τ2k + τ2k+1

4k + 2 τ + τ3 + · · ·+ τ2k−1 + τ2k+1 1 τ2 + τ4 + · · ·+ τ2k

4k + 3 τ + τ3 + · · ·+ τ2k−1 + τ2k+1 + τ2k+2 1− τ2k+2 τ2 + τ4 + · · ·+ τ2k + τ2k+2

To evaluate these geometric series, note that τ + τ3 + · · · + τ2k−1 = (τ − τ2k)/(1 − τ2) =
(τ − τ2k+1)/τ = 1− τ2k. So these sums are

v → u v → w x→ w

4k 1− τ2k 1 τ − τ2k+1

4k + 1 1− τ2k+2 1− τ2k+1 τ
4k + 2 1− τ2k+2 1 τ − τ2k+1

4k + 3 1 1− τ2k+2 τ − τ2k+3

OK, that computation was hypothetical: if the amount of increase cycled τ2k−1, τ2k−1, τ2k, τ2k

. . . , then these would be the resulting flows. To see that these are the amounts of the increases,
we have to see that, at every step, some edge does come up to capacity (so we can’t increase by
more) and no edge goes beyond capacity (so we can increase by that much). From the last table,
this is clear.

2.(c) Show that, no matter how many times you go through the procedure in 2.(b), you’ll never
get to even half the total capacity of the network.

The middle edges do approach their capacity. However, the flow along s→ u increases by τ2k in
each cycle, so it never gets any larger than τ2 + τ4 + τ6 + · · · = τ2/(1− τ2) = τ ≈ 0.62. Similarly,
s→ v never gets larger than 1 + τ + τ3 + τ5 + · · · = 1 + τ/(1− τ2) = 2 and s→ x never gets any
larger than τ + τ2 + τ3 + τ4 + · · · = τ/(1− τ) = τ−1 ≈ 1.62. So the total outflow never gets beyond
τ + 2 + τ−1 ≈ 4.24, which is much less than 21.

Problem 3 Let G be a graph whose edges are assigned lengths. Let t be the length of the shortest
spanning tree of G. Let s be the length of the shortest path which visits every vertex.

3.(a) Show that t ≤ s.
Let Γ be a union of the edges in the shortest path; it is a connected subgraph of G. Let T be a

spanning tree of Γ. Then the length of T is ≤ the sum of the lengths of the edges of Γ. This, in
turn, is ≤ the length of the path. (If the path doubles back on itself, then the sum of the lengths
of the edges of Γ may less than the length of the path.) So there is a tree with length ≤ s.

3.(b) Show that s ≤ 2t.
Take a path which explores the tree, starting at some root and transversing every edge twice

(one in each direction.) This path has length 2t, so the optimal path has length ≤ 2t.

3.(c) Give an example of a graph G, with lengths assigned to edges with the following property:
For any spanning tree T of G, there is some pair of vertices so that the distance from u to v in T
is ≥ 100 times larger than the distance between u and v in G.

Take a cycle of 101 vertices.

