Definition: A short exact sequence of *R*-modules is three *R*-modules *A*, *B* and *C*, and two *R*-module homomorphisms $\alpha : A \to B$ and $\beta : B \to C$ such that α is injective, β is surjective and $\text{Im}(\alpha) = \text{Ker}(\beta)$. We write it as $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$.

Throughout the worksheet, let R be a ring and let $0 \to A \to B \to C \to 0$ be a short exact sequence of R-modules. Last time, we saw that, if $B_0 \subset B_1 \subset \cdots \subset B_\ell$ is a composition series for B, then $\alpha^{-1}(B_0) \subseteq \alpha^{-1}(B_1) \subseteq \cdots \subseteq \alpha^{-1}(B_\ell)$ is a quasi-composition series for A and $\beta(B_0) \subseteq \beta(B_1) \subseteq \cdots \subseteq \beta(B_\ell)$ is a quasi-composition series for C. The next problem is probably the most technical one:

Problem 11.1. With notation as above, show that exactly one of the following things is true:

- (1) Either $\alpha^{-1}(B_{i-1}) = \alpha^{-1}(B_i)$ and $\beta(B_i)/\beta(B_i) \cong B_i/B_{i-1}$
- (2) or else $\alpha^{-1}(B_i)/\alpha^{-1}(B_i) \cong B_i/B_{i-1}$ and $\beta(B_{i-1}) = \beta(B_i)$.

We are now ready to begin our attack on the Jordan-Holder theorem. We make the following temporary definitions:

Definition: Let M be an R-module of finite length and let $0 = M_0 \subset M_1 \subset \cdots \subset M_m = M$ be a composition series. Then we define $\ell(M, M_{\bullet})$ to be the length m of the composition series M_{\bullet} . For any simple module S, we define $Mult(S, M, M_{\bullet})$ to the number of indices i for which $M_i/M_{i-1} \cong S$.

Theorem (Jordan-Holder): Let M be an R-module of finite length. Suppose that M has two composition series, $0 = M_0 \subset M_1 \subset \cdots \subset M_m = M$ and $0 = M'_0 \subset M'_1 \subset \cdots \subset M'_n = N$. Then $\ell(M, M_{\bullet}) = \ell(M, M'_{\bullet})$ and, for any simple module S, we have $Mult(S, M, M_{\bullet}) = Mult(S, M, M'_{\bullet})$.

In other words, Jordan-Holder shows that $\ell(M)$ and Mult(S, M) are well-defined quantities.

Problem 11.2. Let B_{\bullet} be a composition series for B. Define $\tilde{A}_i = \alpha^{-1}(B_i)$ and $\tilde{C}_i = \beta(B_i)$, and let A_{\bullet} and C_{\bullet} be the composition series obtained from deleting duplicate elements from \tilde{A}_{\bullet} and \tilde{C}_{\bullet} . Show that $\ell(B, B_{\bullet}) = \ell(A, A_{\bullet}) + \ell(C, C_{\bullet})$ and that, for any simple module S, we have $\text{Mult}(S, B, B_{\bullet}) = \text{Mult}(S, A, A_{\bullet}) + \text{Mult}(S, C, C_{\bullet})$.

Problem 11.3. Show that, if the Jordan-Holder theorem holds for A and C, then it holds for B.

Problem 11.4. Show that the Jordan-Holder theorem holds if the module M is simple.

Problem 11.5. Prove the Jordan-Holder theorem. Hint: Induct on $\min\{\ell : M \text{ has a composition series of length } \ell\}$.