WORKSHEET 13: UNIQUE FACTORIZATION DOMAINS (UFDs)

Throughout this worksheet, let R be an integral domain.

Definition: Let r be an element of R. We say that r is **composite** if r is nonzero and r can be written as a product of two non-units. We say that r is **irreducible** if it is neither composite, nor 0, nor a unit.

Thus every element of R is described by precisely one of the adjectives "zero", "unit", "composite", "irreducible".

Definition: Let $p \in R$. We say that p is **prime** if pR is a prime ideal and $p \neq 0$.

Problem 13.1. Let p be a non-zero, non-unit. Show that p is prime if and only if, whenever p|ab, either p|a or p|b.

Problem 13.2. Show that prime elements are irreducible.

Problem 13.3. Let k be a field and let $k[t^2, t^3]$ be the subring of k[t] generated by t^2 and t^3 .

- (1) Check that t^2 and t^3 are irreducible in $k[t^2, t^3]$.
- (2) Show that t^2 and t^3 are not prime in $k[t^2, t^3]$.

Problem 13.4. Consider the subring $\mathbb{Z}[\sqrt{-5}]$ of \mathbb{C} .

- (1) Show that 2, 3 and $1 \pm \sqrt{-5}$ are irreducible in $\mathbb{Z}[\sqrt{-5}]$. Hint: Use the complex absolute value.
- (2) Show that 2, 3 and $1 \pm \sqrt{-5}$ are not prime in $\mathbb{Z}[\sqrt{-5}]$. Hint: $2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$.

We want to say that factorizations into prime elements are unique, but factorizations into irreducible elements need not be. In order to do this, we need some vocabulary.

Definition: We define two elements, p and q, of R to be **associate** if there is a unit u such that p = qu. We define two factorizations $p_1p_2\cdots p_m$ and $q_1q_2\cdots q_n$ to be **equivalent** if m=n and there is a permutation σ in S_n such that p_j is associate to $q_{\sigma(j)}$.

Problem 13.5. Show that any non-zero, non-unit element of R has at most one factorization into **prime** elements, up to equivalence.

Problem 13.6. Give examples, in the rings $k[t^2, t^3]$ and $\mathbb{Z}[\sqrt{-5}]$, of elements with multiple, nonequivalent, factorizations into **irreducible** elements.

Definition: We'll make the following nonstandard definition: We'll say that R has factorizations if every non-zero, non-unit 1

Problem 13.7. Let R have factorizations. Show that the following conditions are equivalent:

- (a) All irreducible elements are prime.
- (b) Factorizations into irreducibles are unique, up to equivalence.
- (c) Every nonzero, nonunit, element has a factorization into prime elements.

Definition: An integral domain which has factorizations and in which the equivalent conditions in Problem 13.7 hold, is called a *unique factorization domain*, also known as a *UFD*.

Problem 13.8. Let R be a Noetherian integral domain.

- (1) Let $r_1, r_2, r_3 \dots$ be a sequence of elements of R such that r_{j+1} divides r_j for all j. Show that, for j sufficiently large, r_j and r_{j+1} are associates.
- (2) Show that R has factorizations.

¹Morally, we should consider the product of the empty set to be 1, so 1 has a factorization into a set of irreducibles, namely the empty set. But trying to get this right would be a notational pain, so we'll just refuse to consider factorizations of units.