Definition: A *ring* is a set R with two operations:

- $+: R \times R \rightarrow R$ (called *addition*) and
- $*: R \times R \to R$ (called *multiplication*)

and elements 0_R and 1_R satisfying ¹the following axioms:

- R1: $(R, +, 0_R)$ is an abelian group,
- R2: * is associative: r * (s * t) = (r * s) * t for all $r, s, t \in R$,
- R3: multiplication is both left and right distributive with respect to addition: for all $r, s, t \in R$ we have r * (s+t) = r * s + r * t (called *left-distributivity*) and (s+t) * r = s * r + t * r (called *right-distributivity*), and
- R4: $1_R * r = r * 1_R = r$ for all $r \in R$.

We will almost always drop the symbol * and write ab for a * b; similarly, we will write 0 and 1 for 0_R and 1_R . A ring is said to be *commutative* provided that its multiplicative operation is commutative.² A *zero ring* is a ring with one element.

Problem 1.1. Suppose R is a ring. Show $Mat_{n \times n}(R)$ is a ring with respect to matrix multiplication.

Problem 1.2. Let G be a group and k a ring. The *group ring* kG is defined to be the set of sums of the form $\sum_{g \in G} a_g g$, where the a_g are in k and all but finitely many a_g are 0, with the "obvious" addition and multiplication. Spell out what the "obvious" definitions are and check that they are a ring.

Problem 1.3. Let A be an abelian group. Let $R = \text{Hom}_{\text{grp}}(A, A)$, and define operations + and * on R by $(r_1 + r_2)(a) = r_1(a) + r_2(a)$ and $(r_1 * r_2)(a) = r_1(r_2(a))$. Show that R is a ring.

This ring is called the *endomorphism* ring of A and denoted End(A).

Problem 1.4. Why did we require that A was abelian in the previous problem?

Problem 1.5. Suppose R is a ring. Show that $0_R * x = x * 0_R = 0_R$ for all $x \in R$.

Problem 1.6. Suppose that R is a ring with $0_R = 1_R$. Show that R is the zero ring.

Definition. Suppose that R is a ring. An element $u \in R$ is called a *unit* if there is an element u^{-1} with $u * u^{-1} = u^{-1} * u = 1_R$. The set of units of R is denoted R^{\times} .

Problem 1.7. Show that R^{\times} is a group with respect to *.

Definition: Suppose $(R, +_R, *_R, 1_R)$ and $(S, +_S, *_S, 1_S)$ are two rings. A function $f: R \to S$ is called a *ring homomorphism* provided³ that

- $f(a +_R b) = f(a) +_S f(b)$ for all $a, b \in R$,
- $f(a *_R b) = f(a) *_S f(b)$ for all $a, b \in R$, and
- $f(1_R) = 1_S$

The set of ring homomorphisms from R to S is denoted Hom(R, S) or $Hom_{ring}(R, S)$.

Problem 1.8. Let $R = \mathbb{Z}/15\mathbb{Z}$ and let $S = \mathbb{Z}/3Z$. What is $\operatorname{Hom}_{\operatorname{ring}}(R, S)$? What about $\operatorname{Hom}_{\operatorname{ring}}(S, R)$? What if we allow non-unital homomorphisms?

Problem 1.9. We defined a group ring above. For those who know what a monoid and/or a category are: Can you define a *monoid ring*? What about a *category ring*?

¹Some people do not impose that a ring has a multiplicative identity, but in this course all rings will have a multiplicative identity. See Poonen, "Why all rings should have a 1", https://math.mit.edu/~poonen/papers/ring.pdf for an argument. A ring without an identity is sometimes called a *rng*. A ring without negatives is sometimes called a *rig*.

 $^{^{2}}$ A commutative ring is sometimes called a *grin*. Actually, no one does this, but they should!

³Some people do not impose that $f(1_R) = 1_S$. These people call *f* unital when $f(1_R) = 1_S$. In this course, we define homorphisms to be unital, and say "non-unital homomorphism" on the rare occasions that we need this concept.