Definition: Suppose R is a ring. A subset $I \subset R$ is called a *left ideal* provided that

I1: (I, +) is a subgroup of (R, +); and

I2: for all $r \in R$ we have $rI \subset I$, that is $rx \in I$ for all $x \in I$.

It is called a *right ideal* provided that

I1: (I, +) is a subgroup of (R, +); and

I2: for all $r \in R$ we have $Ir \subset I$, that is $yr \in I$ for all $y \in I$.

A subset of R that is both a left and right ideal is called a *two-sided ideal*.

If R is commutative, then "left ideal", "right ideal" and "two-sided ideal" are the same, and we will simply write *ideal*. 1

Problem 3.1. Show that if A and B are ideals, then $A + B := \{a + b : a \in A, b \in B\}$ is also an ideal.

Problem 3.2. Fix $n \ge 2$. Let *I* be the subset of $R = Mat_{n \times n}(\mathbb{Q})$ consisting of matrices with nonzero entries only in the first row. Is *I* a left ideal? Is it a right ideal?

Problem 3.3. Suppose R and S are rings and $\varphi \in \text{Hom}(R, S)$. Show that $\text{ker}(\varphi)$ is a two-sided ideal of R.

Problem 3.4. Let R be a ring and let I be a left ideal. Since I and R are abelian groups with respect to $+_R$, we can form the quotient group R/I. Show that R/I has a natural structure as a left R-module.

Problem 3.5. Let R be a ring and let I be a two sided ideal. Show that R/I has a natural ring structure.

¹In this course, we will not use the word "ideal" in a non-commutative ring without saying whether it is a left ideal, right ideal or two-sided ideal. If you see a source using "ideal" by itself in a non-commutative setting, it probably means "two-sided ideal", but Prof. Speyer recommends being clearer and not using the word "ideal" by itself in this context.