WORKSHEET 4: INTEGRAL DOMAINS

Definition: A commutative ring R is called an *integral domain* if:

ID1: Whenever xy = 0 in R, we have either x = 0 or y = 0 and

ID2: The ring R is not the zero ring.

Integral domains are similar to fields, but not as nice. The next problems explore the relationship.

Problem 4.1. Show that a field is an integral domain.

Problem 4.2. Show that \mathbb{Z} is an integral domain but not a field.

Problem 4.3. Show that k[x] is an integral domain but not a field, where k is a field.

Problem 4.4. Let R be a nonzero commutative ring.

- (1) Show that R is an integral domain if and only if, for all $x \neq 0$ in R, the map $y \mapsto xy$ is injective.
- (2) Show that R is a field if and only if, for all $x \neq 0$ in R, the map $y \mapsto xy$ is bijective.

Problem 4.5. Let R be an integral domain and suppose that #(R) is finite. Show that R is a field.

Problem 4.6. Let R be an integral domain and let k be a subring of R which is a field, such that R is finite dimensional as a k-vector space. Show that R is a field.

Every integral domain R embeds in a natural field, known as the *field of fractions of* R and denoted Frac(R).

Definition: Let R be an integral domain. Define X to be the set of pairs (p,q) in R^2 with $q \neq 0$. Define an equivalence relation \sim on X by

$$(p_1, q_1) \sim (p_2, q_2)$$
 if and only if $p_1q_2 = p_2q_1$.

We will denote an element of X/\sim as p/q or $\frac{p}{q}$. We define addition and multiplication on X/\sim by:

$$\frac{p_1}{q_1} + \frac{p_2}{q_2} = \frac{p_1 q_2 + p_2 q_1}{q_1 q_2} \qquad \frac{p_1}{q_1} * \frac{p_2}{q_2} = \frac{p_1 p_2}{q_1 q_2}.$$

We denote this field Frac(R).

Problem 4.7. Verify that \sim is an equivalence relation on X.

Problem 4.8. Verify that X/\sim is a field under the operations + and * on X/\sim .

At this point, we can see why it is a good idea to define $\{0\}$ **not** to be an integral domain: If we try these definitions with $R = \{0\}$, then $X = \emptyset$, so $\operatorname{Frac}(R)$ would be \emptyset and, in particular, would not have additive or multiplicative identities.