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WORKSHEET 1: RINGS

Definition: A ring is a set R with two operations:
• +: R×R→ R (called addition) and
• ∗ : R×R→ R (called multiplication)

and elements 0R and 1R satisfying 1the following axioms:
R1: (R,+, 0R) is an abelian group,
R2: ∗ is associative: r ∗ (s ∗ t) = (r ∗ s) ∗ t for all r, s, t ∈ R,
R3: multiplication is both left and right distributive with respect to addition: for all r, s, t ∈ R we have r∗(s+t) =

r ∗ s+ r ∗ t (called left-distributivity) and (s+ t) ∗ r = s ∗ r + t ∗ r (called right-distributivity), and
R4: 1R ∗ r = r ∗ 1R = r for all r ∈ R.

We will almost always drop the symbol ∗ and write ab for a ∗ b; similarly, we will write 0 and 1 for 0R and 1R. A ring is
said to be commutative provided that its multiplicative operation is commutative.2 A zero ring is a ring with one element.

Problem 1.1. Suppose R is a ring. Show Matn×n(R) is a ring with respect to matrix multiplication.

Problem 1.2. Let G be a group and k a ring. The group ring kG is defined to be the set of sums of the form
∑

g∈G agg,
where the ag are in k and all but finitely many ag are 0, with the “obvious” addition and multiplication. Spell out what the
“obvious” definitions are and check that they are a ring.

Problem 1.3. Let A be an abelian group. Let R = Homgrp(A,A), and define operations + and ∗ on R by (r1 + r2)(a) =
r1(a) + r2(a) and (r1 ∗ r2)(a) = r1(r2(a)). Show that R is a ring.

This ring is called the endomorphism ring of A and denoted End(A).

Problem 1.4. Why did we require that A was abelian in the previous problem?

Problem 1.5. Suppose R is a ring. Show that 0R ∗ x = x ∗ 0R = 0R for all x ∈ R .

Problem 1.6. Suppose that R is a ring with 0R = 1R. Show that R is the zero ring.

Definition. Suppose that R is a ring. An element u ∈ R is called a unit if there is an element u−1 with u ∗ u−1 =
u−1 ∗ u = 1R. The set of units of R is denoted R×.

Problem 1.7. Show that R× is a group with respect to ∗.

Definition: Suppose (R,+R, ∗R, 1R) and (S,+S , ∗S , 1S) are two rings. A function f : R → S is called a ring
homomorphism provided3that

• f(a+R b) = f(a) +S f(b) for all a, b ∈ R,
• f(a ∗R b) = f(a) ∗S f(b) for all a, b ∈ R, and
• f(1R) = 1S

The set of ring homomorphisms from R to S is denoted Hom(R,S) or Homring(R,S).

Problem 1.8. Let R = Z/15Z and let S = Z/3Z. What is Homring(R,S)? What about Homring(S,R)? What if we
allow non-unital homomorphisms?

Problem 1.9. We defined a group ring above. For those who know what a monoid and/or a category are: Can you define a
monoid ring? What about a category ring?

1Some people do not impose that a ring has a multiplicative identity, but in this course all rings will have a multiplicative identity. See Poonen,
“Why all rings should have a 1”, https://math.mit.edu/∼poonen/papers/ring.pdf for an argument. A ring without an identity is
sometimes called a rng. A ring without negatives is sometimes called a rig.

2A commutative ring is sometimes called a grin. Actually, no one does this, but they should!
3Some people do not impose that f(1R) = 1S . These people call f unital when f(1R) = 1S . In this course, we define homorphisms to be

unital, and say “non-unital homomorphism” on the rare occasions that we need this concept.



WORKSHEET 2: MODULES

Groups are meant to act on sets. Similarly, rings are meant to act on abelian groups.

Definition: Suppose R is a ring. A left R-module is a set M with two operations:
• +: M ×M →M (called addition) and
• ∗ : R×M →M (called scalar multiplication)

and an element 0M satisfying the following axioms:
M1: (M,+, 0M ) is an abelian group,
M2: (r + s) ∗m = r ∗m+ s ∗m for all r, s ∈ R and m ∈M
M3: (rs) ∗m = r ∗ (s ∗m) for all r, s ∈ R and m ∈M
M4: r ∗ (m+ n) = r ∗m+ r ∗ n for all r ∈ R and m,n ∈M
M5: 1R ∗m = m for all m ∈M .1

“M is an R-module” will mean “M is a left R-module”.
The map ∗ : R×M →M is called an action of R on M and the elements of R are often called scalars.

Problem 2.1. Show that Zn is a left-Matn×n(Z)-module by having X ∈ Matn×n(Z) act on Zn by taking v ∈ Zn to Xv.

Definition. Suppose R is a ring and M and N are R-modules. A function g : M → N is called an R-module homomor-
phism provided that

• g is a group homomorphism and
• g(rm) = rg(m) for all r ∈ R and m ∈M .

The set ofR-module homomorphisms fromM toN is denoted HomR(M,N). We set EndR(M) := HomR(M,M) and
call EndR(M) the endomorphism ring of M .

Problem 2.2. Suppose R is a commutative ring and M is an R-module. Show that there is a “natural” map of rings
R→ EndR(M). What if R is not commutative?

Definition. Suppose R is a ring and M and N are R-modules. The direct sum of M and N , written M ⊕ N , is the
R-module defined as follows: An element of M ⊕ N is an ordered pair (m,n) with m ∈ M and n ∈ N . We have
(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2) and r(m,n) = (rm, rn).

Problem 2.3. Check that M ⊕N is an R-module.

Problem 2.4. Let M1, M2, M , N1, N2 and N be R-modules. Show that HomR(M1 ⊕M2, N) ∼= HomR(M1, N) ×
HomR(M2, N) and HomR(M,N1 ⊕N2) ∼= HomR(M,N1)×HomR(M,N2) as abelian groups.

Problem 2.5. Let L1, L2, . . . , Lp, M1, M2, . . . , Mq and N1, N2, . . . , Nr be R-modules, and let L =
⊕
Li, M =

⊕
Mj

and N =
⊕
Nk. Describe a way to write elements of HomR(L,M), HomR(M,N) and HomR(L,N) as matrices, so that

the composition map HomR(L,M)×HomR(M,N) −→ HomR(L,N) corresponds to matrix multiplication.

1As you might guess, some people do not impose this last condition.



WORKSHEET 3: IDEALS

Definition: Suppose R is a ring. A subset I ⊂ R is called a left ideal provided that
I1: (I,+) is a subgroup of (R,+); and
I2: for all r ∈ R we have rI ⊂ I , that is rx ∈ I for all x ∈ I .

It is called a right ideal provided that
I1: (I,+) is a subgroup of (R,+); and
I2: for all r ∈ R we have Ir ⊂ I , that is yr ∈ I for all y ∈ I .

A subset of R that is both a left and right ideal is called a two-sided ideal.

If R is commutative, then “left ideal”, “right ideal” and “two-sided ideal” are the same, and we will simply write ideal. 1

Problem 3.1. Show that if A and B are ideals, then A+B := {a+ b : a ∈ A, b ∈ B} is also an ideal.

Problem 3.2. Fix n ≥ 2. Let I be the subset of R = Matn×n(Q) consisting of matrices with nonzero entries only in the
first row. Is I a left ideal? Is it a right ideal?

Problem 3.3. Suppose R and S are rings and ϕ ∈ Hom(R,S). Show that ker(ϕ) is a two-sided ideal of R.

Problem 3.4. Let R be a ring and let I be a left ideal. Since I and R are abelian groups with respect to +R, we can form
the quotient group R/I . Show that R/I has a natural structure as a left R-module.

Problem 3.5. Let R be a ring and let I be a two sided ideal. Show that R/I has a natural ring structure.

1In this course, we will not use the word “ideal” in a non-commutative ring without saying whether it is a left ideal, right ideal or two-sided ideal.
If you see a source using “ideal” by itself in a non-commutative setting, it probably means “two-sided ideal”, but Prof. Speyer recommends being
clearer and not using the word “ideal” by itself in this context.



WORKSHEET 4: INTEGRAL DOMAINS

Definition: A commutative ring R is called an integral domain if:
ID1: Whenever xy = 0 in R, we have either x = 0 or y = 0 and
ID2: The ring R is not the zero ring.

Integral domains are similar to fields, but not as nice. The next problems explore the relationship.

Problem 4.1. Show that a field is an integral domain.

Problem 4.2. Show that Z is an integral domain but not a field.

Problem 4.3. Show that k[x] is an integral domain but not a field, where k is a field.

Problem 4.4. Let R be a nonzero commutative ring.
(1) Show that R is an integral domain if and only if, for all x 6= 0 in R, the map y 7→ xy is injective.
(2) Show that R is a field if and only if, for all x 6= 0 in R, the map y 7→ xy is bijective.

Problem 4.5. Let R be an integral domain and suppose that #(R) is finite. Show that R is a field.

Problem 4.6. Let R be an integral domain and let k be a subring of R which is a field, such that R is finite dimensional as
a k-vector space. Show that R is a field.

Every integral domain R embeds in a natural field, known as the field of fractions of R and denoted Frac(R).

Definition: LetR be an integral domain. DefineX to be the set of pairs (p, q) inR2 with q 6= 0. Define an equivalence
relation ∼ on X by

(p1, q1) ∼ (p2, q2) if and only if p1q2 = p2q1.

We will denote an element of X/ ∼ as p/q or pq . We define addition and multiplication on X/ ∼ by:

p1
q1

+
p2
q2

=
p1q2 + p2q1

q1q2

p1
q1
∗ p2
q2

=
p1p2
q1q2

.

We denote this field Frac(R).

Problem 4.7. Verify that ∼ is an equivalence relation on X .

Problem 4.8. Verify that X/ ∼ is a field under the operations + and ∗ on X/ ∼.

At this point, we can see why it is a good idea to define {0} not to be an integral domain: If we try these definitions with
R = {0}, then X = ∅, so Frac(R) would be ∅ and, in particular, would not have additive or multiplicative identities.



WORKSHEET 5: PRIME AND MAXIMAL IDEALS

Definition: Suppose R is a commutative ring. An ideal P of R is called prime if,
P1: for all a and b ∈ R, if ab ∈ P then a ∈ P or b ∈ P .
P2: The ideal P is not all of R.

Problem 5.1. Let R be a commutative ring; let I be an ideal of R. Show that I is prime iff R/I is an integral domain.

Problem 5.2. For which integers n is nZ prime? You may assume uniqueness of prime factorization for this question. 1

Definition: Suppose R is a commutative ring. An ideal m of R is called maximal if:
M1: For all a in R, if a 6∈ m then there is some b ∈ R such that ab ≡ 1 mod m.
M2: The ideal m is not all of R.

Problem 5.3. Let R be a commutative ring and let I be an ideal of R. Show that I is maximal and only if R/I is a field.

Problem 5.4. Show that a maximal ideal is prime.

Problem 5.5. Show that an ideal I ( R is maximal if and only there does not exist an ideal J with I ( J ( R.

Problem (5.5) is the motivation for the word “maximal”. Using Zorn’s lemma, and Problem (5.5), it is easy to show that
every ideal in a nonzero commutative ring is contained in a maximal ideal.

Problem 5.6. Let R = R[x, y]. Show that yR is prime but not maximal.

Problem 5.7. LetR be a commutative ring and let P be a prime ideal. Suppose thatR/P is finite. Show that P is maximal.

Problem 5.8. What are the maximal ideals of Z?

1Pretty soon, we will discuss unique factorization in commutative rings in general. At that point, we will prove it for Z (and many other rings).
The careful student can check that there is no circularity; the problems where I permit you to use it now will not feed into our proof then.



WORKSHEET 6: PRODUCTS OF RINGS AND MODULES

Recall that if A and B are sets, then the product of A and B is the set A × B = {(a, b) | a ∈ A, b ∈ B}. This can be
extended to a product of any number of sets. If R and S are rings, then we want the product R × S to be more than just a
set – we want it to be a ring. To make this happen we define addition and multiplication as follows

• (r, s) + (r′, s′) = (r + r′, s+ s′) for all (r, s), (r′, s′) ∈ R× S and
• (r, s) ∗ (r′, s′) = (r ∗ r′, s ∗ s′) for all (r, s), (r′, s′) ∈ R× S.

Problem 6.1. Show that Z/3Z× Z/5Z and Z/15Z are isomorphic as rings.

Problem 6.2. Are there natural ring homomorphismsR→ R×S and S → R×S? Are there natural ring homomorphisms
R× S → R and R× S → S?

Problem 6.3. Let R and S be rings and let M and N be an R-module and an S-module respectively. Explain how to put
an (R× S)-module structure on the abelian group M ×N .

Every (R× S)-module breaks up as in Problem 6.3, as the next problem explains.

Problem 6.4. Let R and S be rings. Write e for the element (1, 0) ∈ R× S. Let M be an R× S module.
(1) Show that M = eM ⊕ (1− e)M .
(2) Show how to equip eM with the structure of an R-module, and (1 − e)M with the structure of an S-module, so

that M ∼= eM × (1− e)M (in the sense of Problem 6.3 .)



WORKSHEET 7: COMAXIMAL IDEALS

We now introduce the notion of comaximal ideals. As we will see, ideals being comaximal is something like integers
being relatively prime.

Definition: Suppose R is a commutative ring. Ideals A, B of R are said to be comaximal provided that A+B = R.

Problem 7.1. Show that A and B are comaximal if and only if 1 ∈ A+B.

Problem 7.2. If m is maximal and I is an ideal, show that either m and I are comaximal, or else I ⊆ m.

Problem 7.3. Let R be a commutative ring and let A and B be ideals. Show that the map R→ R/A×R/B, sending r to
the ordered pair (r mod A, r mod B), is surjective if and only if A and B are comaximal.

Definition: Suppose R is a ring. The product of ideals A and B in R is the ideal, denoted AB, consisting of all finite
sums

∑
aibi with (ai, bi) ∈ A×B. The product of any finite number of ideals is defined similarly.

Problem 7.4. (This one is a little tricky:) Suppose that A and B are comaximal ideals in a commutative ring R. Show
that A ∩B = AB.

Problem 7.5. Suppose that R is a nonzero commutative ring. Suppose I1, I2, I3, . . . ,Ik are ideals in R that are pairwise
comaximal. Show that the ideals I1 and I2I3 · · · Ik are comaximal.

We now show that comaximal is a stronger condition than relatively prime, and is the same in Z.

Problem 7.6. Let R be a commutative ring, let a and b in R, and suppose that aR and bR are comaximal. Show that any
g which divides both a and b must be a unit.

Problem 7.7. Show that the ideals xk[x, y] and yk[x, y] are not comaximal, although the polynomials x and y are relatively
prime in k[x, y].

Problem 7.8. Let a and b be relatively prime integers. Show that the ideals aZ and bZ are comaximal.



WORKSHEET 8: THE CHINESE REMAINDER THEOREM

“There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have
three left over; and by sevens, two are left over. How many things are there?” – Sunzi Suanjing (3rd century)

A lot of results today are quick citations to past worksheets! Have them ready!

Problem 8.1. Let R be a commutative ring and let A and B be ideals. Describe the “obvious” map R→ R/A×R/B and
show that its kernel is A ∩B.

Problem 8.2. Show that, if R is a commutative ring and A and B are comaximal ideals, then R/AB ∼= R/A×R/B.

Problem 8.3. (The Chinese Remainder Theorem) Show that, if I1, I2, . . . , Ik are a list of pairwise comaximal ideals,
then

R/ (I1I2 · · · Ik) ∼= R/I1 ×R/I2 × · · · ×R/Ik.

Problem 8.4. Show that, if m1, m2, . . . , mk are a list of pairwise relatively prime integers, then

Z/m1 · · ·mkZ ∼= Z/m1Z× · · · × Z/mkZ.

Problem 8.5. Let k be a field and a1, a2, . . . , ar be distinct elements of k. Show that

k[t]/(t− a1)(t− a2) · · · (t− ar)k[t] ∼= k × · · · × k
where the right hand side has r factors.



WORKSHEET 9: SIMPLE MODULES

Definition: Let R be a ring and let S be a (left) R-module. The module S is called simple if S 6= 0 and the only
R-submodules of S are (0) and S.

Problem 9.1. Let R be a ring, let S be a simple R-module, and let M be any R-module.
(1) Let α : S →M be an R-module homomorphism. Show that α is either injective or 0.
(2) Let β : M → S be an R-module homomorphism. Show that β is either surjective or 0.

Problem 9.2. Let R be a ring and let I be a left ideal. Show that R/I is simple and if and only if there are no left ideals J
with I ( J ( R. Such a left ideal is called a maximal left ideal.

Problem 9.3. If R is a commutative ring, show that this notion of “maximal left ideal” coincides with the notion of
“maximal ideal” we have defined before.

Problem 9.4. If the module S is simple, and x is any nonzero element of S, show that S = Rx.

Problem 9.5. In any module M , if there is an element x such that M = Rx, show that there is a left ideal I of R such that
M ∼= R/I .

Thus, we have shown that the simpleR modules are precisely theR-modules of the formR/I for I a maximal left ideal.

Problem 9.6. (Schur’s Lemma) Let M be a simple R-module. Let φ : M →M be an R-module homomorphism. Show
that either φ = 0 or else φ is invertible.

Schur’s Lemma is the first of many results which will relate a property of a module to a property of its endomorphism
ring.



WORKSHEET 10: COMPOSITION SERIES

Let R be a ring and let M be an R-module.

Definition: A chain of submodules of M is a sequence 0 = M0 ⊆M1 ⊆ · · · ⊆M` = M . We call ` the length of the
chain.

Definition: A composition series is a chain of submodules 0 = M0 ⊂ M1 ⊂ · · · ⊂ M` = M such that each quotient
module Mi/Mi−1 is simple. We recall that the zero module is not considered simple, so Mi 6= Mi+1 in a composition
series.

Problem 10.1. Suppose that there is a positive integer L such that, for any chain 0 = M0 ( M1 ( · · · ( M` = M , we
have ` ≤ L. Show that M has a composition series. (Hint: Consider a chain of maximal length.)

Definition: We say that M has finite length if M has a composition series.

Problem 10.2. Let M be an R-module which is a finite set. Show that M has finite length.

Problem 10.3. Let k be a field which is contained in R. Suppose that M is finite dimensional as a k-vector space. Show
that M has finite length.

The following nonstandard definition will be convenient:

Definition: A quasi-composition series is a chain of submodules 0 = M0 ⊆ M1 ⊆ · · · ⊆ M` = M such that each
quotient module Mi/Mi−1 is either simple or 0.

Problem 10.4. Show that, if M has a quasi-composition series, then M has a composition series.

Problem 10.5. Let α : A ↪→ B be an injective R-module homomorphism, and let 0 = B0 ⊂ B1 ⊂ · · · ⊂ Bb = B be a
composition series. Show that α−1(B0) ⊆ α−1(B1) ⊆ · · · ⊆ α−1(Bb) is a quasi-composition series.

Problem 10.6. Let β : B ↪→ C be an surjective R-module homomorphism, and let 0 = B0 ⊂ B1 ⊂ · · · ⊂ Bb = B be a
composition series. Show that β(B0) ⊆ β(B1) ⊆ · · · ⊆ β(Bb) is a quasi-composition series.

This, the property of having a composition series passes to submodules and to quotient modules.



WORKSHEET 11: THE JORDAN-HOLDER THEOREM

Definition: A short exact sequence of R-modules is three R-modules A, B and C, and two R-module homomor-
phisms α : A → B and β : B → C such that α is injective, β is surjective and Im(α) = Ker(β). We write it as

0→ A
α−→ B

β−→ C → 0.

Throughout the worksheet, let R be a ring and let 0→ A→ B → C → 0 be a short exact sequence of R-modules.
Last time, we saw that, if B0 ⊂ B1 ⊂ · · · ⊂ B` is a composition series for B, then α−1(B0) ⊆ α−1(B1) ⊆ · · · ⊆

α−1(B`) is a quasi-composition series for A and β(B0) ⊆ β(B1) ⊆ · · · ⊆ β(B`) is a quasi-composition series for C. The
next problem is probably the most technical one:

Problem 11.1. With notation as above, show that exactly one of the following things is true:
(1) Either α−1(Bi−1) = α−1(Bi) and β(Bi)/β(Bi) ∼= Bi/Bi−1
(2) or else α−1(Bi)/α−1(Bi) ∼= Bi/Bi−1 and β(Bi−1) = β(Bi).

We are now ready to begin our attack on the Jordan-Holder theorem. We make the following temporary definitions:

Definition: Let M be an R-module of finite length and let 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M be a composition
series. Then we define `(M,M•) to be the length m of the composition series M•. For any simple module S, we
define Mult(S,M,M•) to the number of indices i for which Mi/Mi−1 ∼= S.

Theorem (Jordan-Holder): Let M be an R-module of finite length. Suppose that M has two composition series,
0 = M0 ⊂M1 ⊂ · · · ⊂Mm = M and 0 = M ′0 ⊂M ′1 ⊂ · · · ⊂M ′n = N . Then `(M,M•) = `(M,M ′•) and, for any
simple module S, we have Mult(S,M,M•) = Mult(S,M,M ′•).

In other words, Jordan-Holder shows that `(M) and Mult(S,M) are well-defined quantities.

Problem 11.2. Let B• be a composition series for B. Define Ãi = α−1(Bi) and C̃i = β(Bi), and let A• and C• be the
composition series obtained from deleting duplicate elements from Ã• and C̃•. Show that `(B,B•) = `(A,A•)+`(C,C•)
and that, for any simple module S, we have Mult(S,B,B•) = Mult(S,A,A•) + Mult(S,C,C•).

Problem 11.3. Show that, if the Jordan-Holder theorem holds for A and C, then it holds for B.

Problem 11.4. Show that the Jordan-Holder theorem holds if the module M is simple.

Problem 11.5. Prove the Jordan-Holder theorem. Hint: Induct on min{` : M has a composition series of length `}.



WORKSHEET 12: NOETHERIAN RINGS

Due to the Jordan-Holder thoerem, finite length modules are very well behaved. They make a great subject for study,
but unfortunately, many modules we meet naturally are not finite length.

A weaker condition than “finite length” is “finitely generated”, which many more modules obey. Over a general ring,
finitely generated modules can be very tricky. But, over Noetherian1 rings, they are not so bad:

Let R be a ring. Consider the following conditions on R.

Condition 1(a): Every left
ideal I of the ring R is finitely
generated.

Condition 2(a): For any chain
of left ideals I1 ⊆ I2 ⊆ I3 ⊆
· · · of R, we have Ir = Ir+1

for all sufficiently large r.

Condition 3(a): Given any
nonempty collection X of left
ideals of R, there is some I ∈
X which is not properly con-
tained in any other I ′ ∈ X.

Condition 1(b): Every left R-
submoduleM ofRn is finitely
generated.

Condition 2(b): For any chain
of left R-submodules M1 ⊆
M2 ⊆ M3 ⊆ · · · of Rn, we
have Mr = Mr+1 for all suffi-
ciently large r.

Condition 3(b): Given any
nonempty collection X of left
R-submodules of Rn, there
is some M ∈ X which is
not properly contained in any
other M ′ ∈ X.

Condition 1(c): For any
finitely generated left R-
module S, every left R-
submodule M of S is finitely
generated.

Condition 2(c): For any
finitely generated left R-
module S, for any chain
of left R-submodules
M1 ⊆ M2 ⊆ M3 ⊆ · · ·
of S, we have Mr = Mr+1 for
all sufficiently large r.

Condition 3(c): For any
finitely generated left
R-module S, given any
nonempty collection X of left
R-submodules of S, there is
some M ∈ X which is not
properly contained in any
other M ′ ∈ X.

Problem 12.1.
Prove all these definitions are equivalent.2

Definition: A ring which obeys these conditions is called left Noetherian. A ring which obeys these conditions with
“right” in place of “left” is called right Noetherian. A ring which is left and right Noetherian is called Noetherian.

1Named for Emmy Noether, German mathematician 1882-1935, who has a decent case for being the greatest algebraist of all time.
2If you don’t assume the Axiom of Choice, then the conditions in each column are still equivalent to each other, and the implications 3(x) =⇒

1(x) =⇒ 2(x) still hold, but I don’t know about the reverse implications. However, the use of Choice in showing 2(x) =⇒ 3(x) is very simple.



WORKSHEET 13: UNIQUE FACTORIZATION DOMAINS (UFDS)

Throughout this worksheet, let R be an integral domain.

Definition: Let r be an element of R. We say that r is composite if r is nonzero and r can be written as a product of
two non-units. We say that r is irreducible if it is neither composite, nor 0, nor a unit.

Thus every element of R is described by precisely one of the adjectives “zero”, “unit”, “composite”, “irreducible”.

Definition: Let p ∈ R. We say that p is prime if pR is a prime ideal and p 6= 0.

Problem 13.1. Let p be a non-zero, non-unit. Show that p is prime if and only if, whenever p|ab, either p|a or p|b.
Problem 13.2. Show that prime elements are irreducible.

Problem 13.3. Let k be a field and let k[t2, t3] be the subring of k[t] generated by t2 and t3.
(1) Check that t2 and t3 are irreducible in k[t2, t3].
(2) Show that t2 and t3 are not prime in k[t2, t3].

Problem 13.4. Consider the subring Z[
√
−5] of C.

(1) Show that 2, 3 and 1±
√
−5 are irreducible in Z[

√
−5]. Hint: Use the complex absolute value.

(2) Show that 2, 3 and 1±
√
−5 are not prime in Z[

√
−5]. Hint: 2 · 3 = (1 +

√
−5)(1−

√
−5).

We want to say that factorizations into prime elements are unique, but factorizations into irreducible elements need not
be. In order to do this, we need some vocabulary.

Definition: We define two elements, p and q, of R to be associate if there is a unit u such that p = qu. We define two
factorizations p1p2 · · · pm and q1q2 · · · qn to be equivalent if m = n and there is a permutation σ in Sn such that pj is
associate to qσ(j).

Problem 13.5. Show that any non-zero, non-unit element of R has at most one factorization into prime elements, up to
equivalence.

Problem 13.6. Give examples, in the rings k[t2, t3] and Z[
√
−5], of elements with multiple, nonequivalent, factorizations

into irreducible elements.

Definition: We’ll make the following nonstandard definition: We’ll say that R has factorizations if every non-zero,
non-unit1n R can be written in at least one way as a product of irreducibles.

Problem 13.7. Let R have factorizations. Show that the following conditions are equivalent:
(a) All irreducible elements are prime.
(b) Factorizations into irreducibles are unique, up to equivalence.
(c) Every nonzero, nonunit, element has a factorization into prime elements.

Definition: An integral domain which has factorizations and in which the equivalent conditions in Problem 13.7 hold,
is called a unique factorization domain, also known as a UFD.

Problem 13.8. Let R be a Noetherian integral domain.
(1) Let r1, r2, r3 . . . be a sequence of elements of R such that rj+1 divides rj for all j. Show that, for j sufficiently

large, rj and rj+1 are associates.
(2) Show that R has factorizations.

1Morally, we should consider the product of the empty set to be 1, so 1 has a factorization into a set of irreducibles, namely the empty set. But
trying to get this right would be a notational pain, so we’ll just refuse to consider factorizations of units.



WORKSHEET 14: PRINCIPAL IDEAL DOMAINS (PIDS)

Definition: Let R be a commutative ring. An ideal I of R is called principal if I = rR for some r ∈ R.

Problem 14.1. Show that every ideal in Z is principal. Do not assume unique factorization into primes. (Hint: Take the
smallest positive element of the ideal.)

Definition: A Principal Ideal Domain or PID is an integral domain in which every ideal is principal.

Problem 14.2. Show that every PID is Noetherian.

Problem 14.3. Let R be a PID. Let u and v be two relatively prime elements of R meaning that, if g divides u and g
divides b, then g is a unit. Show that u and v are comaximal, meaning that uR+ vR = R.

Problem 14.4. Let R be a PID, let p be an irreducible element of R, and let a be any element of R. Show that either p
divides a or else p and a are comaximal.

Problem 14.5. Show that, in a PID, irreducible elements are prime.

Problem 14.6. Show that a PID is a UFD.1

We note in particular that we have now shown Z is a UFD.

Problem 14.7. Since PID’s are UFD’s, we can talk about GCD’s in them. Show that, if R is a PID and a and b ∈ R, then
aR+ bR = GCD(a, b)R.

Problem 14.8. Suppose R is a PID. Show that every nonzero prime ideal in R is a maximal ideal.

We conclude with some fun and useful lemmas about matrices over PID’s:

Problem 14.9. Let R be a PID and let x and y ∈ R. Show that there is a matrix
[
a b
c d

]
with entries in R and determinant 1

and [
a b
c d

] [
x
y

]
=

[
GCD(x, y)

0

]
.

Problem 14.10. Let R be a PID and let x and y ∈ R. Show that there are 2 × 2 matrices U and V with entries in R and
determinant 1 such that:

U

[
x 0
0 y

]
V =

[
GCD(x, y) 0

0 LCM(x, y)

]
.

Here LCM(x, y) := xy
GCD(x,y) .

1This need not hold without Choice; Hodges, “Lauchli’s algebraic closure of Q”, Proceedings of the Cambridge Philosophical Society, 1976
showed that it is consistent with ZF for there to be a PID in which some elements have no factorization into irreducibles.



WORKSHEET 15: THE EUCLIDEAN ALGORITHM

To find the greatest common measure of two numbers. . . (Euclid, The Elements, Book VII, Proposition 2)

Starting with two positive integers x0 and x1, the Euclidean algorithm1 recursively defines two sequences of integers x0,
x1, x2, . . . and a1, a2, a3, . . . as follows: For n ≥ 2, we have

xn = xn−2 − an−1xn−1
with 0 ≤ xn < xn−1. The algorithm terminates when xn = 0.

Problem 15.1. Compute the sequences xn and an with x0 = 321 and x1 = 123.

Problem 15.2. Show that GCD(x0, x1) = GCD(x1, x2) = · · · = GCD(xn−1, xn) = xn−1, where xn = 0.

Let this common GCD be g.

Problem 15.3. Show that there is an elementary matrix E with E
[ xn−2
xn−1

]
= [ xn

xn−1 ]. Recall that a 2× 2 elementary matrix
is one of the form [ 1 ∗0 1 ] or [ 1 0

∗ 1 ].

Problem 15.4. Show that there is a product of elementary matrices F , with F [ x0x1 ] = [ g0 ]. (Hint: Remember Problem Set
1?)

Problem 15.5. Show that there exist sequences bk and ck such that bkxk + ckxk+1 = g and show how to compute the b’s
and c’s using the a’s.

Problem 15.6. Demonstrate that your method works by finding b and c such that b · 321 + c · 123 = 3.

1First recorded by Euclid, a Greek mathematician who lived in roughly 300 BCE.



WORKSHEET 16: EUCLIDEAN RINGS

Definition: Suppose R is an integral domain. A norm on R is any function N : R → Z≥0. The function N is said to
be a positive norm provided that N(r) > 0 for all nonzero r. We call N a multiplicative norm if N(ab) = N(a)N(b).

Some examples: The normal absolute value on Z is a positive norm. The norm map N(a+ bi) = a2 + b2 on the Gaussian
Integers Z[i] is a positive norm. If k is a field, then we can define a norm on k[x] by N(p(x)) = deg p for p 6= 0 and
N(0) = 0. 1 We can be a bit more clever and make our norm positive and multiplicative by choosing some positive integer
c ≥ 2 and defining N(p) = cdeg(p) for p 6= 0 and N(0) = 0.

Definition: An integral domain R is called an Euclidean Domain provided that there is a positive norm N on R such
that for any two elements a, b ∈ R with b 6= 0 there exist q, and r ∈ R with

a = bq + r and N(r) < N(b).

The element q is called the quotient and the element r is called the remainder of the division.

Problem 16.1. Let k be a field. Show that k is Euclidean with respect to the norm that N(0) = 0 and N(x) = 1 for x 6= 0.

Problem 16.2. Let k be a field. Verify that k[x] is Euclidean with respect to the norm N(p) = cdeg(p) discussed at the end
of the paragraph above.

Problem 16.3. Let R be an integral domain with positive multiplicative norm N , and let K be its field of fractions. For
a
b ∈ K, define NK

(
a
b

)
= N(a)

N(b) .

(1) Show that NK ( ) is a well defined function K → Q≥0.
(2) Show that R is Euclidean with respect to N if and only if, for each x ∈ K, there is an q ∈ R with NK(x− q) < 1.

Problem 16.4. Verify that Z[i] is Euclidean with respect to the norm N(a+ bi) = a2 + b2.

Problem 16.5. Show that every Euclidean domain is a PID.

Here are some bonus fun problems about Euclidean domains.

Problem 16.6. Show that Z[
√
−2] is Euclidean, with respect to the norm N(a+ b

√
−2) = a2 + 2b2.

Problem 16.7. Show that Z[
√
−3] is not Euclidean, with respect to the normN(a+b

√
−3) = a2+3b2, but that Z

[
1+
√
−3

2

]
is Euclidean with respect to the norm N

(
c+d
√
−3

2

)
= c2+3d2

4 .

Problem 16.8. Let p be a positive prime integer.
(1) Show that Z[i] has an ideal π with #(Z[i]/π) = p if and only if there is a square root of −1 in Z/pZ.
(2) Show that Z[i] has a principal ideal (a+ bi)Z[i] with Z[i]/(a+ bi)Z[i] if and only if p is of the form a2 + b2.
(3) Conclude the following statement which never mentions the ring Z[i]: A prime p is of the form a2 + b2 if and only

if there is a square root of −1 in Z/pZ.2

Problem 16.9. Let R be a Euclidean domain. Show that there is some nonunit f such that every nonzero residue class in
R/fR is represented by a unit of R. Deduce that Z

[
1+
√
−19
2

]
is not Euclidean for any norm function.

1Under various circumstances, it can be reasonable to define the degree of the 0 polynomial to be −∞, 0 or∞. We do not take a stand on this
issue here. Some people define the degree of the 0 polynomial to be −1, but David Speyer sees no justification for this.

2The primes p for which this occurs are precisely 2 and the primes which are 1 mod 4. Here is a quick proof: If p ≡ 1 mod 4, then −1 ≡
(p− 1)! ≡ (−1)(p−1)/2((p− 1)/2)!2 ≡ ((p− 1)/2)!2 mod p. Conversely, if p is odd and−1 ≡ x2 mod p then (−1)(p−1)/2 ≡ xp−1 ≡ 1 mod p,
so p ≡ 1 mod 4.



WORKSHEET 17: INTRODUCTION TO SMITH NORMAL FORM

The Smith normal form theorem says the following:

Theorem:(Smith Normal Form) Let R be a principal ideal domain and let X be an m× n matrix with entries in R.
Then there invertible m×m and n× n matrices U and V , and elements d1, d2, . . . , dmin(m,n) of R, such that

X = UDV,

where D is the m × n matrix with Djj = dj and Dij = 0 for i 6= j. Moreover, we may assume d1|d2| · · · |dmin(m,n)

and, with this normalization, the dj are unique up to multiplication by units.

The dj are called the invariant factors of X . We first set up some notation:

Problem 17.1. Let R be any ring. Define an relation∼ on Matm×n(R) by X ∼ Y if there are invertible m×m and n×n
matrices U and V with Y = UXV . Show that ∼ is an equivalence relation.1

Problem 17.2. Here is a more abstract perspective on ∼: Let X and Y ∈ Matm×n(R).
(1) Show that X ∼ Y if and only if we can choose vertical isomorphisms making the following diagram commute:

Rn
X //

∼=��

Rm

∼=��
Rn

Y // Rm

(2) Show that, if X ∼ Y , then the kernels, cokernels and images of X and Y are isomorphic R-modules.

For nonnegative integers m and n and elements d1, d2, . . . , dmin(m,n) of R, we define diagmn(d1, d2, . . . , dmin(m,n)) to
be the m × n matrix D above. Thus, Smith normal form says that every matrix is ∼-equivalent to a matrix of the form
diagmn(d1, d2, . . . , dmin(m,n)) with d1|d2| · · · |dmin(m,n) and the dj are unique up to multiplication by units.

It will be convenient today to know the following formula. The morally right proof of this result will be more natural in
a month so you may assume it for now.

Theorem:(The Cauchy-Binet formula). Let R be a commutative ring. Given an m × n matrix X with entries in R,
and subsets I ⊆ {1, 2, . . . ,m} and J ⊆ {1, 2, . . . , n} of the same size, define ∆IJ(X) to be the determinant of the
square submatrix of X using rows I and columns J . Let X and Y be a × b and b × c matrices with entries in R and
let I and K be subsets of {1, 2, . . . , a} and {1, 2, . . . , c} with |I| = |K| = q. Then

∆IK(XY ) =
∑

J⊆{1,2,...,b}, |J |=q

∆IJ(X)∆JK(Y ).

The next few problems show how to compute invariant factors.

Problem 17.3. Let R be a UFD. Let U , X and V be m×m, m× n and n× n matrices with entries in R. Show that the
GCD of the q × q minors of X divides the GCD of the q × q minors of UXV .

Problem 17.4. Let R be a UFD. Show that, if X ∼ Y , then the GCD of the q× q minors of X is equal to the GCD of the
q × q minors of Y .

Problem 17.5. LetR be a UFD. LetX be anm×nmatrix with entries inR. Show that, ifX ∼ diagmn(d1, d2, . . . , dmin(m,n))
with d1|d2| · · · |dmin(m,n), then d1d2 · · · dq is the GCD of the q × q minors of X .

Problem 17.6. Assuming the Smith normal form theorem for Z, compute the invariant factors of the following matrices:[
2 0
0 3

] [
2 1
0 2

]  2 −1 −1
−1 2 −1
−1 −1 2

 .
Problem 17.7. If you have gotten this far, go ahead and prove the Cauchy-Binet formula. It can be done by brute force.

1The factorization UDV may remind the reader of singular value decomposition. This is not a coincidence; Smith normal form can be thought
of as a non-Archimedean version of singular value decomposition.



WORKSHEET 18: PROOF OF THE SMITH NORMAL FORM THEOREM

Most people find the proof of the Smith normal form theorem for Euclidean domains more intuitive than the case of a
general PID. When I went to write them out, they actually came out very similar.

Problem 18.1. (Proof of Smith normal form for Euclidean integral domains) Let R be a Euclidean integral domain
with positive norm N( ). Let X ∈ Matm×n(R). If X = 0, the Smith normal form theorem clearly holds for X , so assume
otherwise. Let d be an element of smallest norm among all nonzero elements occurring as an entry in a matrix Y with
Y ∼ X . Let Y be a matrix with Y ∼ X and Y11 = d.

(1) Show that d divides Yi1 and Y1j for all 2 ≤ i ≤ m and 2 ≤ j ≤ n.
(2) Show that there is a matrix Z ∼ Y with Z11 = d and Zi1 = Z1j = 0 for all 2 ≤ i ≤ m and 2 ≤ j ≤ n.
(3) Show that d divides Zij for all 2 ≤ i ≤ m and 2 ≤ j ≤ n.
(4) Show that X is ∼-equivalent to a matrix of the form diagmn(d1, d2, . . . , dmin(m,n)) with d1|d2| · · · |dmin(m,n).

Problem 18.2. Consequence of the proof of Smith normal form for Euclidean integral domains: Define a stronger equiva-
lence relation ∼E where X ∼E Y if Y = UXV where U and V products of elementary matrices.

(1) Trace through your proof and check that you have shown, in a Euclidean integral domain, that every matrix is
∼E-equivalent to a matrix of the form diagmn(d1, d2, . . . , dmin(m,n)) with d1|d2| · · · |dmin(m,n).

(2) LetR be a Euclidean integral domain. Let SLn(R) be the group of n×nmatrices with entries inR and determinant
1. Show that SLn(R) is generated by elementary matrices.

To do the case of a general PID, you’ll need the following old problems:
(14.9) Let x and y ∈ R Show that there is a matrix

[
a b
c d

]
with entries in R such that ad− bc = 1 and[

a b
c d

] [
x
y

]
=

[
GCD(x, y)

0

]
.

(14.10) Let x and y be nonzero elements of R. Show that there are invertible 2× 2 matrices U and V with

U

[
x 0
0 y

]
V =

[
GCD(x, y) 0

0 LCM(x, y)

]
.

Here LCM(x, y) := xy
GCD(x,y) .

Problem 18.3.
Let R be a Noetherian ring (such as a PID) and let D be a nonempty subset of R. Show that there is an element d ∈ D

which is “minimal with respect to division”: More precisely, show that there is an element such that if d′ ∈ D divides d,
then d divides d′ as well.

Problem 18.4. (Proof of Smith normal form for PID’s) Let R be a PID and let X ∈ Matm×n(R). Let D be the set of
all entries occurring in any matrix Y with Y ∼ X . Let d be as in Problem 18.3 for D and let Y be a matrix with Y ∼ X
and Y11 = d.

(1) Show that d divides Yi1 and Y1j for all 2 ≤ i ≤ m and 2 ≤ j ≤ n.
(2) Show that there is a matrix Z ∼ Y with Z11 = d and Zi1 = Z1j = 0 for all 2 ≤ i ≤ m and 2 ≤ j ≤ n.
(3) Show that d divides Zij for all 2 ≤ i ≤ m and 2 ≤ j ≤ n.
(4) Show that X is ∼-equivalent to a matrix of the form diagmn(d1, d2, . . . , dmin(m,n)) with d1|d2| · · · |dmin(m,n).



WORKSHEET 19: CLASSIFICATION OF FINITELY GENERATED MODULES OVER A PID

Problem 19.1. Let S be a commutative ring and let M be a finitely generated S-module.
(1) Show that there is a surjection S⊕m �M for some m.
(2) Suppose that S is Noetherian (for example, every PID is Noetherian). Show that there is a surjection Sn �

Ker(Sm →M) for some n.
(3) With hypotheses and assumptions as in the previous part, show that there is an m × n matrix X with M ∼=

Sm/XSn.

The previous problem shows that every finitely generated S-module is of the form Sm/XSn for some m×n matrix X .
Now, and throughout the worksheet, let R be a PID. We will see how to understand the structure of Rm/XRn in terms
of the Smith normal form of X .

Problem 19.2.
Let X ∈ Matm×n(R) and let (d1, d2, . . . , dmin(m,n)) be the invariant factors of X .

(1) Show that Rm/XRn ∼= Rm−min(m,n) ⊕
⊕

j R/djR.
(2) Show that Ker(X) ∼= R#{j:dj=0}+n−min(m,n).

Problem 19.3. (Classification of modules over a PID: Elementary divisor form) Show that every finitely generated
R-module M is of the form

⊕
R/djR for some nonunits d1, d2, . . . , dk in R with d1|d2| · · · |dk.

Problem 19.4. (Classification of modules over a PID: Prime power form) Show that every finitely generated R-module
M is of the form R⊕r ⊕

⊕
R/p

ej
j R for some nonnegative integer r, some sequence of prime elements pj and some

sequence of positive integers ej .

Problems 19.3 and 19.4 each give a list of modules such that every finitely generated R-module M is isomorphic to
some module in this list. In for this to be a full classification, we now turn to the problem of checking that these lists do
not contain two isomorphic modules, so that we have not listed any isomorphism classes more than once. We’ll carry this
out for the prime power form.

Problem 19.5. Let q be a prime element of R and let M be an R-module.
(1) Show that R/qR is a field and that, for any k ≥ 0, that qkM/qk+1M is an R/qR-vector space.
(2) Let M = R⊕r ⊕

⊕
R/p

ej
j R as in Problem 19.4. Give a formula for the dimension of qkM/qk+1M as an R/qR-

vector space in terms of the ej and r.

(3) Suppose that R⊕r ⊕
⊕
R/p

ej
j R
∼= R⊕r

′ ⊕
⊕
R/p

e′j
j R. Show that r = r′ and ej = e′j .

If you have extra time, do the elementary divisors form as well:

Problem 19.6. Let d1, d2, . . . , dk and d′1, d′2, . . . , d′k′ be nonunits of R with d1|d2| · · · |dk and d′1|d′2| · · · |d′k′ , such that⊕
R/diR ∼=

⊕
R/d′iR. Show that k = k′ and di is associate to d′i.



WORKSHEET 20: APPLICATIONS OF JORDAN NORMAL FORM AND RATIONAL CANONICAL FORM

The point of this section is to give some examples of problems where knowing Jordan Normal form is useful.

Problem 20.1. Let A be a 5× 5 complex matrix with minimal polynomial X5 −X3.
(1) What is the characteristic polynomial of A2?
(2) What is the minimal polynomial of A2?

Problem 20.2. In this problem, we investigate square roots of matrices:
(1) Let g ∈ GLn(C). Show that there is an h in GLn(C) with h2 = g.
(2) Show that there is no matrix h in GL2(R) with h2 =

[−1 1
0 −1

]
.

Problem 20.3. Let k be an algebraically closed field and let A be an n × n matrix with entries in k. Show that A can be
written in the form D+N where D is diagonalizable, N is nilpotent and DN = ND. This is called the Jordan-Chevalley
decomposition of A.1

Problem 20.4. Let k be an algebraically closed field2 and let A be an n× n matrix with entries in k. We define

k[A] = Spank(1, A,A
2, A3, A4, . . . ) ⊆ Matn×n(k).

Z(A) = {B ∈ Matn×n(k) : AB = BA}.
(1) Show that k[A] ⊆ Z(A). (I don’t recommend Jordan form here.)
(2) Show that the following are equivalent:

(a) dimk k[A] = n.
(b) dimk Z(A) = n.
(c) k[A] = Z(A).
(d) The minimal polynomial of A is the same as the characteristic polynomial of A.
(e) For each eigenvalue λ of A, there is only one Jordan block of A.

A matrix which obeys the conditions above is called regular.
(3) For any matrix A, show that dim k[A] ≤ n.
(4) For any matrix A, show that dimZ(A) ≥ n.

Problem 20.5. Let’s prove that a real symmetric matrix is diagonalizable!
(1) Let X be an n × n real matrix and suppose that X is not diagonalizable. Prove that there is a two dimensional

subspace V of Rn such that X takes V to itself by a matrix of the form
[
0 −c
1 −b

]
with b2− 4c ≤ 0. (A hint to handle

a technical issue: Notice that the matrices
[
λ 0
1 λ

]
and

[
0 −λ2
1 2λ

]
are similar.)

(2) Now suppose that X is symmetric. Let · be the ordinary dot product on Rn. Show that, for any v and w ∈ Rn, we
have (Xv) · w = v · (Xw).

(3) Now suppose that X is symmetric and non-diagonalizable. Let V be the subspace in part (1) and let v, w be a basis
for V on which X acts by the matrix

[
0 −c
1 −b

]
with b2 − 4c ≤ 0. Show that w · w + b(v · w) + c(v · v) = 0.

(4) Deduce a contradiction. Hint: Recall the Cauchy-Schwarz inequality (v · w)2 ≤ (v · v)(w · w).

1The Jordan-Chevalley decomposition is unique, but that is a bit hard for a worksheet; it might occur on a problem set.
2In fact, this result is true over any field, except that one needs to refer to generalized Jordan form in (3).(d). I thought that might be a bit too hard

for the worksheet though.



WORKSHEET 21: UNIQUE FACTORIZATION IN POLYNOMIAL RINGS

Let R be an integral domain and let F be its field of fractions. We know that F [x] is a Euclidean Domain, hence a PID
(Problem 16.5), hence a UFD (Problem 14.6). Thus, if p(x) ∈ R[x], then p(x) factors uniquely in F [x]. In general, the
situation in R[x] can be much more complex:

Problem 21.1. Let R = R[t2, t3] and let F be the fraction field of R. Show that the polynomial x2 − t2 factors in F [x],
but is irreducible in R[x].

Problem 21.2. Let R = R[t2, t3] and let F be the fraction field of R. Give two different irreducible factorizations of the
polynomial x6 − t6 over R[x].

As the rest of this worksheet will show, if R is a UFD, then life is much nicer. For the rest of this worksheet:
Assume that R is a UFD.

Problem 21.3. Let p ∈ R be a prime element. Let a(x) and b(x) be polynomials in R[x]. Show that, if a(x)b(x) ∈ pR[x],
then either a(x) ∈ pR[x] or b(x) ∈ pR[x].

We define a polynomial anxn + · · ·+ a1x+ a0 in R[x] to be primitive if GCD(an, · · · , a1, a0) = 1.

Problem 21.4. (Gauss’s Lemma) Let a(x)b(x) = c(x) with a(x), b(x) and c(x) ∈ R[x]. Show that c(x) is primitive if
and only if a(x) and b(x) are primitive.

Problem 21.5. Let a(x)b(x) = c(x) with a(x) ∈ R[x] primitive, b(x) ∈ F [x] and c(x) ∈ R[x]. Show that b(x) ∈ R[x].

Problem 21.6. Let p(x) ∈ R[x]. Show that the following are equivalent:
(1) p(x) is prime in R[x].
(2) p(x) is irreducible in R[x].
(3) One of the following two conditions holds:

• p(x) is a constant polynomial whose value is a prime element p of R.
• p(x) is primitive in R[x], and is prime in F [x].

Helpful reminder: R and F [x] are UFD’s, so prime and irreducible are synonyms in those two rings.

We are now set to prove:

Problem 21.7. Show that, if R is a UFD, then R[x] is a UFD.

In particular, Z[x1, . . . , xn] and k[x1, . . . , xn] are UFD’s for any field k and any number of variables.



WORKSHEET 22: SOME PROBLEMS ABOUT EXTERIOR ALGEBRA

Problem 22.1. Let e1, e2, e3 be the standard basis of R3. Expand

(e1 + e2 + e3) ∧ (e1 + 2e2 + 3e3)

in the basis e1 ∧ e2, e1 ∧ e3, e2 ∧ e3 of R3.

Problem 22.2. Let L : Cn → Cn be a linear map with eigenvalues λ1, λ2, . . . , λn. What are the eigenvalues of
∧2 L? Of∧k L?

Problem 22.3. Let v1, v2, . . . , vd be vectors in a vector space V . Show that v1 ∧ v2 ∧ · · · ∧ vd = 0 if and only if the vi are
linearly dependent.

Problem 22.4. Let V be a vector space over a field k and let η ∈
∧d V for d > 0.

(1) Let v be a nonzero vector in V . Show that v ∧ η = 0 if and only if η can be factored as v ∧ θ for θ ∈
∧d−1 V .

(2) More generally, let U = {v ∈ V : v ∧ η = 0} and let u1, u2, . . . , uk be a basis of U . Show that η can be factored
as u1 ∧ u2 ∧ · · · ∧ uk ∧ ψ for some ψ ∈

∧d−k V .

Problem 22.5. Let e1, e2, e3 be the standard basis of R3.
(1) Show that there is a unique isomorphism h :

∧2R3 → R3 such that, for v ∈ R3 and η ∈
∧2R3, we have

v ∧ η = (v · h(η))e1 ∧ e2 ∧ e3. Here the · is the standard dot product.
(2) The cross product map V × V → V is defined by v × w := h(v ∧ w). Check that this is the cross product you

already know.
(3) Let g ∈ SO(3). Show that gh(η) = h(

∧2(g)η) and show that g(u× v) = g(u)× g(v).

Problem 22.6. Let V be a vector space of dimension n. Let L : V → V be a linear map; we will also write L for the
matrix of L. Recall that the adjugate matrix, Adj(L), is the matrix whose (i, j) entry is (−1)i+j times the determinant of
the (n− 1)× (n− 1) minor of L where we delete row j and column i. For example,

Adj

r s t
u v w
x y z

 =

 vz − wy −(sz − ty) sw − tv
−(uz − wx) rz − tx −(rw − tu)
uy − vx −(ry − sx) rv − su

 .
(1) What is the relation between Adj(L) and

∧n−1(L)?
(2) For any v ∈ V and η ∈

∧n−1(V ), show that L(v) ∧
∧n−1(L)(η) = (detL)(v ∧ η).

(3) Show that L Adj(L) = (detL)Idn.



WORKSHEET A: SUMMARY OF MAJOR RESULTS

This is a chance to go back through the last several worksheets and track down what you’ve done. Throughout, let R
be an integral domain. I would recommend first tracking does all the implications which do hold and only then talk about
counterexamples to check that other implications don’t.

Problem A.1. Draw arrows indicating which implications exist between the following concepts:

R is a PID R is Euclidean

R is Noetherian R is a UFD

Problem A.2. Let I be a nonzero ideal of R. Draw arrows indicating which implications exist between the following
concepts:

I is prime I is maximal

I is of the form (f) for
f irreducible

I is of the form (f) for
f prime

Problem A.3. Suppose thatR is a UFD and let I be a nonzero ideal ofR. Draw arrows indicating which implications exist
between the following concepts:

I is prime I is maximal

I is of the form (f) for
f irreducible

I is of the form (f) for
f prime

Problem A.4. Suppose that R is a PID and let I be a nonzero ideal of R. Draw arrows indicating which implications exist
between the following concepts:

I is prime I is maximal

I is of the form (f) for
f irreducible

I is of the form (f) for
f prime



WORKSHEET B: RATIONAL CANONICAL FORM OF A MATRIX

Problem B.1. Let k be a field. Make sure everyone in your group remembers how to do the old homework problem: Give
an equivalence between (1) k[t]-modules which are finite dimensional as k-vector spaces and (2) pairs (V, T ) where V is a
finite dimensional k-vector space and T : V → V is a k-linear map.

Problem B.2. Let k be a field and let M1 and M2 be k[t]-modules which are finite dimensional as k-vector spaces,
corresponding to (V1, T1) and (V2, T2). What is the pair corresponding to M1 ⊕M2?

Let k be a field and let f = xd + fd−1x
d−1 + · · · + f0 be a monic polynomial with coefficients in k. We define the

companion matrix of f by

C(f) =



0 0 0 · · · 0 −f0
1 0 0 · · · 0 −f1
0 1 0 · · · 0 −f2
0 0 1 · · · 0 −f3
...

...
...

. . .
...

...
0 0 0 · · · 1 −fd−1


Problem B.3. Show that k[x]/f(x)k[x] corresponds to the pair (kd,C(f)).

An n× n matrix with entries in k is said to be in rational1 canonical form if it is a block matrix of the form
C(f1)

C(f2)

. . .

C(fk)


for some monic polynomials f1(x), f2(x), . . . , fk(x) with f1|f2| · · · |fk.

Problem B.4. (The rational canonical form theorem) Let V be a finite dimensional k-vector space and let T : V → V
be a k-linear map. Show that there is a basis of V in which T is given by a matrix in rational canonical form, and that the
polynomials f1, f2, . . . , fk are uniquely determined by (V, T ).

Problem B.5. Describe the characteristic polynomial of T in terms of f1, f2, . . . , fk.

Problem B.6. The minimal polynomial of T is the monic polynomial g(t) ∈ k[t] of lowest degree such that g(T ) = 0.
Describe the minimal polynomial of T in terms of f1, f2, . . . , fk.

1The word “rational” is because we can put matrices into rational canonical form while staying in the same ground field, unlike Jordan-canonical
form where need to pass to a larger field. It does not indicate that the notion is special to the field Q.



WORKSHEET C: JORDAN AND GENERALIZED JORDAN FORM OF A MATRIX

Let λ be an element of k. We1 define the Jordan block by

Jn(λ) =


λ 0 0 · · · 0
1 λ 0 · · · 0
0 1 λ · · · 0
...

...
. . . . . .

...
0 0 · · · 1 λ


Problem C.1. Show that (x−λ)n−1, (x−λ)n−2, . . . , (x−λ), 1 is a basis for k[x]/(x−λ)nk[x] and show that multiplication
by x, in this basis, is given by the matrix Jn(λ).

A matrix is said to be in Jordan normal form if it is a block matrix whose blocks are Jordan blocks.

Problem C.2. (The Jordan normal form theorem) Suppose that the field k is algebraically closed. Show that each n×n
matrix with entries in k is similar to a matrix in Jordan normal form, and that the Jordan normal form is unique up to
reordering blocks.

Let f = xd + fd−1x
d−1 + · · ·+ f1 + 0 be a monic polynomial with coefficients in k. Let Ud be the d× d matrix with

a 1 in the upper-right corner and all other entries 0. Define the generalized Jordan block Jn(f(x)) to be the (dn) × (dn)
block matrix

Jn(f) =


C(f) 0 0 · · · 0
Ud C(f) 0 · · · 0
0 Ud C(f) · · · 0
...

...
. . . . . .

...
0 0 · · · Ud C(f)


Problem C.3. Show that {xif(x)j : 0 ≤ i < d, 0 ≤ j < n} is a basis for k[x]/f(x)nk[x].

Problem C.4. Show that multiplication by x in the above basis is given by the matrix Jn(f(x)).

Define a matrix to be in generalized Jordan normal form if it is a block diagonal matrix where each block is of the form
Jni(pi(x)) and the polynomials pi(x) are irreducible.

Problem C.5. Show that each n× n matrix with entries in k is similar to a matrix in generalized Jordan normal form, and
that the generalized Jordan normal form is unique up to reordering blocks.

1The more standard choice is to take Jn(λ) to be the transpose of this. The choice given here is more compatible with the standard choices used
to define rational canonical form, so we will adopt it. There is no important difference between these conventions.



WORKSHEET D: TENSOR PRODUCTS OF VECTOR SPACES

“I wasn’t asking much: I just wanted to figure out the most basic properties of tensor products. And it seemed like a moral
issue. I felt strongly that if I really really wanted to feel like I understand this ring, which is after all a set, then at least I
should be able to tell you, with moral authority, whether an element is zero or not. For fuck’s sake!”
“What tensor products taught me about living my life” (Cathy O’Neil),
https://mathbabe.org/2011/07/20/what-tensor-products-taught-me-about-living-my-life/

Let k be a field and let V and W be k-vector spaces. Define V ⊗W to be the k-vector space generated by symbols
v ⊗ w, for v ∈ V and w ∈W , modulo the following relations:

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2 (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w c(v ⊗ w) = (cv)⊗ w = v ⊗ (cw) (∗).
Here v, v1, v2 ∈ V , w, w1, w2 ∈W and c ∈ k.

Problem D.1. Show that 0⊗ w = v ⊗ 0 = 0.

Problem D.2. Prove the universal property of tensor products: For any vector space k, and any k-bilinear pairing 〈 , 〉 :
V ×W → X , there is a unique k-linear map λ : V ⊗W → X such that 〈v, w〉 = λ(v ⊗ w).

“[A]ll the proofs I came up with involved the universal property of tensor products, never the elements themselves. It
was incredibly unsatisfying, it was like I could only describe the outside of an alien world instead of getting to know its
inhabitants.” – ibid.

Problem D.3. Let V1, V2, W1, W2 be k-vector spaces and α : V1 → V2 and β : W1 → W2 be k-linear maps. Show that
there is a unique linear map α⊗ β : V1 ⊗W1 → V2 ⊗W2 such that (α⊗ β)(v ⊗ w) = α(v)⊗ β(w).

Problem D.4. Let V1, V2, V3, W1, W2, W3 be k-vector spaces and α1 : V1 → V2, α2 : V2 → V3, β1 : W1 → W2 and
β2 : W2 →W3 be k-linear maps. Show that (α2 ⊗ β2) ◦ (α1 ⊗ β1) = (α2 ◦ α1)⊗ (β2 ◦ β1).

At this point, we have the basic formal properties to work with tensor products, but we have almost no ability to compute
with them. For example, we don’t even know a basis for km ⊗ kn! We turn to this issue next.

Problem D.5. Let I be a set of vectors spanning V and let J be a set of vectors spanning W . Show that the tensor products
v ⊗ w, for v ∈ I and w ∈ J , span V ⊗W .

Problem D.6. Let U be a vector space and let I be a linearly independent subset of U . Prove that there is a basis B of U
containing I . This will require Zorn’s Lemma. 1

Problem D.7. Let U be a vector space, let I be a linearly independent subset of U and let u ∈ I . Show that there is a linear
form α : U → k such that α(u) = 1 and α(u′) = 0 for u′ ∈ I \ {u}.
Problem D.8. Let I be a linearly independent subset of V and let J be a linearly independent subset of W . Show that the
tensor products v ⊗ w, for v ∈ I and w ∈ J , are linearly independent in V ⊗W .

Problem D.9. Let I be a basis of V and let J be a basis of W . Show that the tensor products v ⊗w, for v ∈ I and w ∈ J ,
are a basis of V ⊗W .

That was a lot of abstraction, so let’s do something concrete.

Problem D.10.
Let α and β be the linear maps R2 → R2 given by the matrices [ 1 2

3 4 ] and [ 5 6
7 8 ]. Choose a basis for R2⊗R2 and write down

the matrix of α⊗ β.

“After a few months, though, I realized something. I hadn’t gotten any better at understanding tensor products, but I was
getting used to not understanding them. It was pretty amazing. I no longer felt anguished when tensor products came up; I
was instead almost amused by their cunning ways.” – ibid.

1Although Problems D.6 and D.7 genuinely use the Axiom of Choice, Problems D.8 and D.9 are true without it. Here is a sketch of a proof. Note
that the arguments suggested in this worksheet work fine in finite dimensional vector spaces. Now, let V and W be vector spaces of any dimension,
let I and J be linearly independent subsets of V and W and suppose for the sake of contradiction that there is a linear relation

∑
cvwv⊗w between

elements v ⊗ w as above. Note that this linear relation involves only finitely many elements of I and J . Moreover, the deduction of this dependence
from the relations (∗) must also use only finitely many elements of V and W . Let V and W be the subspaces of V and W spanned by these finitely
many elements. Then we obtain a counterexample to Problem D.8 inside V ⊗W , and we have dimV , dimW <∞.



WORKSHEET E: TENSOR ALGEBRAS, SYMMETRIC AND EXTERIOR ALGEBRAS

Let k be a field and let V be a vector space over k. There is a natural isomorphism (V ⊗ V ) ⊗ V ∼= V ⊗ (V ⊗ V )
and similarly for higher tensor powers. We therefore write V ⊗n for the n-fold tensor product of V with itself and write
elements of V ⊗n as

∑
cj1j2···jn vj1 ⊗ vj2 ⊗ · · · ⊗ vjn without parentheses. We define V ⊗0 to be k.

We define the tensor algebra T (V ) to be
⊕

d V
⊗d.

Problem E.1. Show that T (V ) has a unique ring structure where the product of σ ∈ V ⊗s and τ ∈ V ⊗t is σ⊗τ ∈ V ⊗(s+t).

Problem E.2.
Let L : V → W be a linear map. Show that there is a unique map of rings T (L) : T (V )→ T (W ) with T (L)(v) = L(v)
for v ∈ V .

We define the symmetric algebra Sym•(V ) to be the quotient of T (V ) by the 2-sided ideal generated by all tensors of
the form v ⊗ w − w ⊗ v.

Problem E.3. Show that Sym•(V ) is a commutative ring.

Problem E.4. Show that Sym•(V ) breaks up as a direct sum
⊕∞

d=0 Symd(V ) where Symd(V ) is a quotient of V ⊗d.

Problem E.5. Let x1, x2, . . . , xn be a basis of V . Show that {xi1xi2 · · ·xid : 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n} is a basis of
Symd(V ). Show that Sym•(V ) ∼= k[x1, . . . , xn].

We define the exterior algebra,
∧•(V ) to be the quotient of T (V ) by the two sided ideal generated by v ⊗ v for all

v ∈ V . The multiplication in
∧•(V ) is generally denoted ∧.

Problem E.6. Show that, for v and w ∈ V , we have v ∧ w = −w ∧ v.

Problem E.7. Show that
∧•(V ) breaks up as a direct sum

⊕∞
d=0

∧d(V ) where
∧d(V ) is a quotient of V ⊗d.

Problem E.8. Let e1, e2, . . . , en be a basis of V . Show that {ei1 ∧ ei2 ∧ · · · ∧ eid : 1 ≤ i1 < i2 < · · · < id ≤ n} is a
basis of

∧d(V ).

Problem E.9. Let v1, v2, . . . , vd ∈ V . Show that v1 ∧ v2 ∧ · · · ∧ vd = 0 if and only if v1, v2, . . . , vd are linearly dependent.

We now consider the effect of these constructions on linear maps. Let V and W be k-vector spaces and L : V → W a
linear map.

Problem E.10. Show that there are unique ring maps Sym•(L) : Sym•(V )→ Sym•(W ) and
∧•(L) :

∧•(V )→
∧•(W )

with Sym•(L)(v) = L(v) and
∧•(L)(v) = L(v) for v ∈ V .

Problem E.11. Let L : k3 → k3 be given by the matrix
[
r s t
u v w
x y z

]
. Compute the matrix of

∧2(L) :
∧2(k3)→

∧2(k3).

Problem E.12. Let L : k2 → k2 be given by the matrix [ p qr s ]. Compute the matrix of Sym2(L) : Sym2(k2)→ Sym2(k2).

Problem E.13. Show that
∧d(L ◦M) =

∧d(L) ◦
∧d(M) and Symd(L ◦M) = Symd(L) ◦ Symd(M).

Given an m × n matrix X with entries in k, and subsets I ⊆ {1, 2, . . . ,m} and J ⊆ {1, 2, . . . , n} of the same size,
define ∆IJ(X) to be the determinant of the square submatrix of X using rows I and columns J .

Problem E.14. Prove the Cauchy-Binet formula: Let X and Y be a× b and b× c matrices with entries in k and let I and
K be subsets of {1, 2, . . . , a} and {1, 2, . . . , c} with |I| = |J | = q. Then

∆IK(XY ) =
∑

J ⊆ {1, 2, . . . , b}
|J | = q

∆IJ(X)∆JK(Y ).



WORKSHEET F: BILINEAR FORMS

Suppose k is a field and V is a k-vector space.

Definition. A k-bilinear form on V is a bilinear pairing B : V × V → k. A k-bilinear form B is said to be
• symmetric provided that B(x, y) = B(y, x) for all x and y ∈ V ,
• alternating provided that B(u, u) = 0 for all u ∈ V , and
• skew-symmetric (or anti-symmetric) provided that B(s, t) = −B(t, s) for all s and t ∈ V .

Problem F.1. Show that every alternating form is skew symmetric. Hint for this problem and the next two: Think about
B(v + w, v + w).

Problem F.2. Show that, if the characteristic of k is not 2, then every skew-symmetric form is alternating.

Problem F.3. Show that, if the characteristic of k is not 2 and B is a symmetric bilinear form with B(v, v) = 0 for all
v ∈ V , then B(v, w) = 0 for all v and w ∈ V .

We now restrict our attention to the finite dimensional case: Let v1, v2, . . . , vn be a basis of V and let G be the n × n
matrix Gij = B(vi, vj). We call G the Gram matrix.1

Problem F.4. In the basis v1, . . . , vn, verify the formula B(~x, ~y) = ~xTG~y.
Under what conditions on G will B be symmetric?
Under what conditions on G will B be alternating?
Under what conditions on G will B be skew-symmetric?

Problem F.5. Let w1, w2, . . . , wn be a second basis of V , with wj =
∑
Sijvi. Let H be the Gram matrix B(wi, wj). Give

a formula for H in terms of S and G.

A bilinear form B on V is called nondegenerate if, for all v ∈ V , there is some w ∈ V with B(v, w) 6= 0.

Problem F.6. Let V be a finite dimensional vector space. Show that B is nondegenerate if and only if the Gram matrix of
B is invertible.

Problem F.7. Let V be a finite dimensional2 vector space, let B be a bilinear form on V and let L be a subspace of V such
that the restriction of B to L is nondegenerate. Define L⊥ = {v ∈ V : B(u, v) = 0 ∀u ∈ L}. Show that V = L⊕ L⊥.

Remark If we are dealing with a general form, we should define both L⊥ = {v ∈ V : B(u, v) = 0 ∀u ∈ L} and
⊥L = {v ∈ V : B(v, u) = 0 ∀u ∈ L}. Then we have both V = L⊕ L⊥ and V = L⊕ ⊥L. However, both for symmetric
and skew-symmetric forms we have L⊥ = ⊥L, so we don’t need to make this distinction.

1The term Gram matrix is generally used in the context of applied linear algebra, such as computer graphics and control theory. In that context,
the vector space V is simply Rn and B is simply dot product, but vi is some basis of Rn which is not orthonormal. The Gram matrix encodes the
“skewness” of our basis.

2Without finite dimensionality, this is not true. Let V be a vector space with basis e1, e2, e3, . . . and consider the standard bilinear form
B (

∑
aiei,

∑
biei) =

∑
aibi. Let L be the subspace spanned by ei − ej . Then L⊥ is 0 because, if

∑
akek is perpendicular to all ei − ej then

ai = aj for all i, j. But V only allows finite sums, so the only such elements are 0.



WORKSHEET G: SYMMETRIC BILINEAR FORMS

Let k be a field, let V be a finite dimensional vector space over k and let B : V × V → k be a k-bilinear pairing. Recall
that, given a basis v1, v2, . . . , vn of V , we encode B in a Gram matrix G with Gij = B(vi, vj), and that B is symmetric if
and only if G is. Changing bases of V modifies the Gram matrix by G 7→ SGST for invertible S. It is natural to ask how
nice we can make the matrix G by action of this kind.

To simplify our results, assume that k does not have characteristic 2.

Problem G.1. Suppose that B is a symmetric bilinear form. Show that there is a basis of V for which the Gram matrix
of B is diagonal. (Hint: If B 6= 0, use Problem F.3 to find a vector v with B(v, v) 6= 0, then consider the decomposition
V = kv ⊕ (kv)⊥.)

Problem G.2. Let G be a symmetric matrix with entries in k. Show that there is an invertible matrix S and a diagonal
matrix D such that G = SDST .

Problem G.3. Let k = Q. Carry out the procedure in the previous problems for
(1) G = [ 0 1

1 0 ].

(2) G =
[

2 −1 0
−1 2 −1
0 −1 2

]
.

This immediately raises the question, given two diagonal matrices diag(α1, α2, . . . , αn) and diag(β1, β2, . . . , βn), when
are the bilinear forms ~xT diag(α1, α2, . . . , αn)~y and ~xT diag(β1, β2, . . . , βn)~y equivalent up to a change of basis? For a
general field, this is a very hard question. However, we can say some things.

Problem G.4. Suppose that there are nonzero scalars γi in k with αi = γ2i βi. Show that the ~xT diag(α1, α2, . . . , αn)~y and
~xT diag(β1, β2, . . . , βn)~y are equivalent.

Problem G.5. Show that the bilinear formsB([ x1x2 ] , [ y1y2 ]) = x1x2 +y1y2 and C([ x1x2 ] , [ y1y2 ]) = 5x1x2 +5y1y2 are related
by a change of basis in Q2, even though 5 is not square in Q.

Problem G.6. Let k = R. Show that any bilinear form over R can be represented by a diagonal matrix whose entries lie
in {−1, 0, 1}.



WORKSHEET H: SYMMETRIC BILINEAR FORMS OVER R

Let B be a symmetric bilinear form on a vector space W over R. We say that B is
• Positive definite if B(w,w) > 0 for all nonzero w ∈W .
• Positive semidefinite if B(w,w) ≥ 0 for all w ∈W .
• Negative definite if B(w,w) < 0 for all nonzero w ∈W .
• Negative semidefinite if B(w,w) ≤ 0 for all w ∈W .

Recall that we showed in Problem G.6 that a symmetric bilinear form over R can always be represented by a diagonal
matrix whose entries lie in {−1, 0, 1}.

Problem H.1. Let B be a symmetric bilinear form which can be represented by the diagonal matrix

diag(

n+︷ ︸︸ ︷
1, 1, . . . , 1,

n0︷ ︸︸ ︷
0, 0, . . . , 0,

n−︷ ︸︸ ︷
−1,−1, . . . ,−1).

(1) Show that n+ is the dimension of the largest subspace L of V such that B restricted to L is positive definite.
(2) Show that n+ + n0 is the dimension of the largest subspace L of V such that B restricted to L is positive semidef-

inite.
(3) Show that n− is the dimension of the largest subspace L of V such that B restricted to L is negative definite.
(4) Show that n−+n0 is the dimension of the largest subspace L of V such that B restricted to L is negative semidef-

inite.

Problem H.2. Let B be a symmetric bilinear form. Suppose that B can be represented (in two different bases) by the
diagonal matrices

diag(

m+︷ ︸︸ ︷
1, 1, . . . , 1,

m0︷ ︸︸ ︷
0, 0, . . . , 0,

m−︷ ︸︸ ︷
−1,−1, . . . ,−1) and diag(

n+︷ ︸︸ ︷
1, 1, . . . , 1,

n0︷ ︸︸ ︷
0, 0, . . . , 0,

n−︷ ︸︸ ︷
−1,−1, . . . ,−1).

Show that (m+,m0,m−) = (n+, n0, n−).

The word signature is used to refer to something like the triple (n+, n0, n−). Unfortunately, sources disagree as to
exactly what the signature is. Various sources will say that the signature is (n+, n0, n−), (n+, n−, n0), (n+, n−) or
n+ − n−. In this course, we’ll adopt the convention that the signature is (n+, n0, n−). If G is a symmetric real matrix, we
will use the term signature of G to refer to the signature of the bilinear form B(x, y) = xTGy.

Problem H.3.
Let G be a real symmetric n×n matrix with signature (n+, n0, n−). If n0 > 0, show that detG = 0. If n0 = 0, show that
detG is nonzero with sign (−1)n− .

Problem H.4. Let G be a real symmetric n × n matrix with signature (n+, n0, n−). Let G′ be the upper left symmetric
(n − 1) × (n − 1) submatrix of G. Show that the signature of G′ is one of (n+ − 1, n0 + 1, n− − 1), (n+ − 1, n0, n−),
(n+, n0, n− − 1), (n+, n0 − 1, n−). Hint: Use Problem H.1.

Problem H.5. LetG be a real symmetric matrix and letGk be the k×k upper left submatrix ofG. Assume that detGk 6= 0
for 1 ≤ k 6= n. Show that the signature of G is (n − q, 0, q) where q is the number of k for which detGk−1 and detGk
have opposite signs. Here we formally define detG0 = 1.

Problem H.6. (Sylvester’s criterion) Let G be a real symmetric matrix and define Gk as above. Show that G is positive
definite if and only if all the detGk are > 0. (In other words, we no longer have to take detGk 6= 0 as an assumption.)


