Problem B.1. Let k be a field. Make sure everyone in your group remembers how to do the old homework problem: Give an equivalence between (1) k[t]-modules which are finite dimensional as k-vector spaces and (2) pairs (V, T) where V is a finite dimensional k-vector space and $T: V \to V$ is a k-linear map.

Problem B.2. Let k be a field and let M_1 and M_2 be k[t]-modules which are finite dimensional as k-vector spaces, corresponding to (V_1, T_1) and (V_2, T_2) . What is the pair corresponding to $M_1 \oplus M_2$?

Let k be a field and let $f = x^d + f_{d-1}x^{d-1} + \dots + f_0$ be a monic polynomial with coefficients in k. We define the *companion matrix* of f by

$$\mathcal{C}(f) = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & -f_0 \\ 1 & 0 & 0 & \cdots & 0 & -f_1 \\ 0 & 1 & 0 & \cdots & 0 & -f_2 \\ 0 & 0 & 1 & \cdots & 0 & -f_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -f_{d-1} \end{bmatrix}$$

Problem B.3. Show that k[x]/f(x)k[x] corresponds to the pair $(k^d, \mathcal{C}(f))$.

An $n \times n$ matrix with entries in k is said to be in *rational*¹ canonical form if it is a block matrix of the form

for some monic polynomials $f_1(x), f_2(x), \ldots, f_k(x)$ with $f_1|f_2|\cdots|f_k$.

Problem B.4. (The rational canonical form theorem) Let V be a finite dimensional k-vector space and let $T : V \to V$ be a k-linear map. Show that there is a basis of V in which T is given by a matrix in rational canonical form, and that the polynomials f_1, f_2, \ldots, f_k are uniquely determined by (V, T).

Problem B.5. Describe the characteristic polynomial of T in terms of f_1, f_2, \ldots, f_k .

Problem B.6. The *minimal polynomial* of T is the monic polynomial $g(t) \in k[t]$ of lowest degree such that g(T) = 0. Describe the minimal polynomial of T in terms of f_1, f_2, \ldots, f_k .

¹The word "rational" is because we can put matrices into rational canonical form while staying in the same ground field, unlike Jordan-canonical form where need to pass to a larger field. It does not indicate that the notion is special to the field \mathbb{Q} .