
WORKSHEET E: TENSOR ALGEBRAS, SYMMETRIC AND EXTERIOR ALGEBRAS

Let k be a field and let V be a vector space over k. There is a natural isomorphism (V ⊗ V ) ⊗ V ∼= V ⊗ (V ⊗ V )
and similarly for higher tensor powers. We therefore write V ⊗n for the n-fold tensor product of V with itself and write
elements of V ⊗n as

∑
cj1j2···jn vj1 ⊗ vj2 ⊗ · · · ⊗ vjn without parentheses. We define V ⊗0 to be k.

We define the tensor algebra T (V ) to be
⊕

d V
⊗d.

Problem E.1. Show that T (V ) has a unique ring structure where the product of σ ∈ V ⊗s and τ ∈ V ⊗t is σ⊗τ ∈ V ⊗(s+t).

Problem E.2.
Let L : V → W be a linear map. Show that there is a unique map of rings T (L) : T (V )→ T (W ) with T (L)(v) = L(v)
for v ∈ V .

We define the symmetric algebra Sym•(V ) to be the quotient of T (V ) by the 2-sided ideal generated by all tensors of
the form v ⊗ w − w ⊗ v.

Problem E.3. Show that Sym•(V ) is a commutative ring.

Problem E.4. Show that Sym•(V ) breaks up as a direct sum
⊕∞

d=0 Symd(V ) where Symd(V ) is a quotient of V ⊗d.

Problem E.5. Let x1, x2, . . . , xn be a basis of V . Show that {xi1xi2 · · ·xid : 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n} is a basis of
Symd(V ). Show that Sym•(V ) ∼= k[x1, . . . , xn].

We define the exterior algebra,
∧•(V ) to be the quotient of T (V ) by the two sided ideal generated by v ⊗ v for all

v ∈ V . The multiplication in
∧•(V ) is generally denoted ∧.

Problem E.6. Show that, for v and w ∈ V , we have v ∧ w = −w ∧ v.

Problem E.7. Show that
∧•(V ) breaks up as a direct sum

⊕∞
d=0

∧d(V ) where
∧d(V ) is a quotient of V ⊗d.

Problem E.8. Let e1, e2, . . . , en be a basis of V . Show that {ei1 ∧ ei2 ∧ · · · ∧ eid : 1 ≤ i1 < i2 < · · · < id ≤ n} is a
basis of

∧d(V ).

Problem E.9. Let v1, v2, . . . , vd ∈ V . Show that v1 ∧ v2 ∧ · · · ∧ vd = 0 if and only if v1, v2, . . . , vd are linearly dependent.

We now consider the effect of these constructions on linear maps. Let V and W be k-vector spaces and L : V → W a
linear map.

Problem E.10. Show that there are unique ring maps Sym•(L) : Sym•(V )→ Sym•(W ) and
∧•(L) :

∧•(V )→
∧•(W )

with Sym•(L)(v) = L(v) and
∧•(L)(v) = L(v) for v ∈ V .

Problem E.11. Let L : k3 → k3 be given by the matrix
[
r s t
u v w
x y z

]
. Compute the matrix of

∧2(L) :
∧2(k3)→

∧2(k3).

Problem E.12. Let L : k2 → k2 be given by the matrix [ p qr s ]. Compute the matrix of Sym2(L) : Sym2(k2)→ Sym2(k2).

Problem E.13. Show that
∧d(L ◦M) =

∧d(L) ◦
∧d(M) and Symd(L ◦M) = Symd(L) ◦ Symd(M).

Given an m × n matrix X with entries in k, and subsets I ⊆ {1, 2, . . . ,m} and J ⊆ {1, 2, . . . , n} of the same size,
define ∆IJ(X) to be the determinant of the square submatrix of X using rows I and columns J .

Problem E.14. Prove the Cauchy-Binet formula: Let X and Y be a× b and b× c matrices with entries in k and let I and
K be subsets of {1, 2, . . . , a} and {1, 2, . . . , c} with |I| = |J | = q. Then

∆IK(XY ) =
∑

J ⊆ {1, 2, . . . , b}
|J | = q

∆IJ(X)∆JK(Y ).


