WORKSHEET H: SYMMETRIC BILINEAR FORMS OVER R

Let B be a symmetric bilinear form on a vector space W over $\mathbb R$. We say that B is

- *Positive definite* if $B(w, w) > 0$ for all nonzero $w \in W$.
- *Positive semidefinite* if $B(w, w) \geq 0$ for all $w \in W$.
- *Negative definite* if $B(w, w) < 0$ for all nonzero $w \in W$.
- *Negative semidefinite* if $B(w, w) \leq 0$ for all $w \in W$.

Recall that we showed in Problem G.6 that a symmetric bilinear form over $\mathbb R$ can always be represented by a diagonal matrix whose entries lie in $\{-1, 0, 1\}$.

Problem H.1. Let B be a symmetric bilinear form which can be represented by the diagonal matrix

diag
$$
(1, 1, ..., 1, 0, 0, ..., 0, \overbrace{-1, -1, ..., -1}^{n_0})
$$
.

- (1) Show that n_+ is the dimension of the largest subspace L of V such that B restricted to L is positive definite.
- (2) Show that $n_+ + n_0$ is the dimension of the largest subspace L of V such that B restricted to L is positive semidefinite.
- (3) Show that $n_$ is the dimension of the largest subspace L of V such that B restricted to L is negative definite.
- (4) Show that $n_{-} + n_0$ is the dimension of the largest subspace L of V such that B restricted to L is negative semidefinite.

Problem H.2. Let B be a symmetric bilinear form. Suppose that B can be represented (in two different bases) by the diagonal matrices

$$
\frac{m_+}{\text{diag}(1,1,\ldots,1,0,0,\ldots,0,-1,-1,\ldots,-1)} \text{ and } \text{diag}(1,1,\ldots,1,0,0,\ldots,0,-1,-1,\ldots,-1).
$$

Show that $(m_+, m_0, m_-) = (n_+, n_0, n_-).$

The word *signature* is used to refer to something like the triple (n_+, n_0, n_-) . Unfortunately, sources disagree as to exactly what the signature is. Various sources will say that the signature is $(n_+, n_0, n_-), (n_+, n_-, n_0), (n_+, n_-)$ or $n_+ - n_-.$ In this course, we'll adopt the convention that the signature is (n_+, n_0, n_-) . If G is a symmetric real matrix, we will use the term *signature of* G to refer to the signature of the bilinear form $B(x, y) = x^T Gy$.

Problem H.3.

Let G be a real symmetric $n \times n$ matrix with signature (n_+, n_0, n_-) . If $n_0 > 0$, show that det $G = 0$. If $n_0 = 0$, show that det G is nonzero with sign $(-1)^{n-1}$.

Problem H.4. Let G be a real symmetric $n \times n$ matrix with signature (n_+, n_0, n_-) . Let G' be the upper left symmetric $(n-1) \times (n-1)$ submatrix of G. Show that the signature of G' is one of $(n_{+} - 1, n_{0} + 1, n_{-} - 1)$, $(n_{+} - 1, n_{0}, n_{-})$, $(n_{+}, n_{0}, n_{-} - 1), (n_{+}, n_{0} - 1, n_{-})$. Hint: Use Problem H.1.

Problem H.5. Let G be a real symmetric matrix and let G_k be the $k \times k$ upper left submatrix of G. Assume that $\det G_k \neq 0$ for $1 \leq k \neq n$. Show that the signature of G is $(n - q, 0, q)$ where q is the number of k for which det G_{k-1} and det G_k have opposite signs. Here we formally define $\det G_0 = 1$.

Problem H.6. (Sylvester's criterion) Let G be a real symmetric matrix and define G_k as above. Show that G is positive definite if and only if all the det G_k are > 0 . (In other words, we no longer have to take $\det G_k \neq 0$ as an assumption.)