PROBLEM SET 11: DUE DECEMBER 8

Problem 1. Remember to go to plan an hour to go to Gradescope and do Practice QR Exam 11. **Both** questions will be about exterior algebra.

Problem 2. Please write up proofs of three of problems 20.2, 20.5, 21.4, 21.5, 21.6, 21.7.

Problem 3. Let e_1, e_2, e_3 be the standard basis of \mathbb{R}^3 and consider the map $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$. Compute the matrix of $\bigwedge^2 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$ in the basis $e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3$ for $\bigwedge^2 \mathbb{R}^3$.

Problem 4. Recall that the rank of a linear map $\phi: V \to W$ is the dimension of $\phi(V)$. Show that $\bigwedge^k \phi = 0$ if and only if the rank of ϕ is $\lt k$. Please define the rank as the dimension of the image.

Problem 5. (The rational root theorem.) Let R be a UFD and let $K = Frac(R)$. Let $f(x) =$ $f_n x^n + \cdots + f_1 x + f_0 \in R[x]$ and suppose that $f(a/b) = 0$ for $a/b \in K$, with $GCD(a, b) = 1$. Show that a divides f_0 and b divides f_n .

Problem 6. In this problem, we use the rational root theorem (Problem [5\)](#page-0-0) to provide another perspective on Gauss's lemma. Recall that for $R \subseteq S$ and $\theta \in S$; we defined θ to be integral over R if θ is a zero of a **monic** polynomial in $R[x]$. (See Problem Set 5, Problem 7.)

Let R be a domain, let $K = \text{Frac}(R)$ and let $f(x) = x^m + f_{m-1}x^{m-1} + \cdots + f_0$ be a monic polynomial in R[x]. Let L be an algebraic closure of K and let $f(x)$ factor as $\prod (x - \theta_i)$ in L.

- (1) Let $g(x) = x^n + g_{n-1}x^{n-1} + \cdots + g_1x + g_0$ be a monic polynomial in $L[x]$ dividing $f(x)$. Show that the coefficients q_i are integral over R.
- (2) Now suppose that R is a UFD, and suppose that $f(x) = g(x)h(x)$ with g and h monic polynomials in $K[x]$. Show that $g(x)$ and $h(x)$ are in $R[x]$ (Hint: See Problem [5.](#page-0-0))

This is a large fraction of Gauss's lemma, and working a bit harder this can be turned into a full proof of Gauss's lemma using the concept of integral elements.

Problem 7. This problem presents the basics of symmetric bilinear forms. Let k be a field of characteristic not equal to 2 and let V be a vector space over k. Let $\langle , \rangle : V \times V \to k$ be a symmetric bilinear form, meaning that $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$, $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$, $\langle cv, w \rangle = \langle v, cw \rangle = c\langle v, w \rangle$ and $\langle v, w \rangle = \langle w, v \rangle$.

- (1) Suppose that $\langle v, v \rangle = 0$ for all v in V. Show that $\langle v, w \rangle = 0$ for all v and $w \in V$.
- (2) Let $\langle , \rangle : V \times V \to k$ be a symmetric bilinear form and let $v \in V$ with $\langle v, v \rangle \neq 0$. Set $v^{\perp} = \{w \in V : \langle v, w \rangle = 0\}$. Show that $V = kv \oplus v^{\perp}$.
- (3) Let dim $V < \infty$. Show that V has a basis v_1, \ldots, v_n such that $\langle v_i, v_j \rangle = 0$ for $i \neq j$.

Given two bilinear forms \langle , \rangle_1 and \langle , \rangle_2 on V, we say that they are isomorphic if there is an automorphism $\phi: V \to V$ such that $\langle v_1, v_2 \rangle_1 = \langle \phi(v_1), \phi(v_2) \rangle_2$.

(4) Consider the three symmetric bilinear forms

$$
\begin{array}{rcl}\n\langle (x_1, x_2), (y_1, y_2) \rangle_{++} & = & x_1 y_1 + x_2 y_2 \\
\langle (x_1, x_2), (y_1, y_2) \rangle_{+-} & = & x_1 y_1 - x_2 y_2 \\
\langle (x_1, x_2), (y_1, y_2) \rangle_{--} & = & -x_1 y_1 - x_2 y_2\n\end{array}
$$

on \mathbb{R}^2 . Show that these are not isomorphic.

(5) Now let k be the field with 3 elements. Define bilinear forms \langle , \rangle_{++} , \langle , \rangle_{+-} and \langle , \rangle_{--} on $k²$ as above. Two of them are isomorphic to each other; which ones?