PROBLEM SET 11: DUE DECEMBER 8

Problem 1. Remember to go to plan an hour to go to Gradescope and do Practice QR Exam 11. **Both questions will be about exterior algebra.**

Problem 2. Please write up proofs of three of problems 20.2, 20.5, 21.4, 21.5, 21.6, 21.7.

Problem 3. Let e_1 , e_2 , e_3 be the standard basis of \mathbb{R}^3 and consider the map $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$: $\mathbb{R}^3 \longrightarrow \mathbb{R}^3$. Compute the matrix of $\bigwedge^2 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$ in the basis $e_1 \wedge e_2$, $e_1 \wedge e_3$, $e_2 \wedge e_3$ for $\bigwedge^2 \mathbb{R}^3$.

Problem 4. Recall that the rank of a linear map $\phi : V \to W$ is the dimension of $\phi(V)$. Show that $\bigwedge^k \phi = 0$ if and only if the rank of ϕ is $\langle k$. Please define the rank as the dimension of the image.

Problem 5. (The rational root theorem.) Let R be a UFD and let $K = \operatorname{Frac}(R)$. Let $f(x) = f_n x^n + \cdots + f_1 x + f_0 \in R[x]$ and suppose that f(a/b) = 0 for $a/b \in K$, with $\operatorname{GCD}(a, b) = 1$. Show that a divides f_0 and b divides f_n .

Problem 6. In this problem, we use the rational root theorem (Problem 5) to provide another perspective on Gauss's lemma. Recall that for $R \subseteq S$ and $\theta \in S$; we defined θ to be integral over R if θ is a zero of a **monic** polynomial in R[x]. (See Problem Set 5, Problem 7.)

Let R be a domain, let $K = \operatorname{Frac}(R)$ and let $f(x) = x^m + f_{m-1}x^{m-1} + \cdots + f_0$ be a monic polynomial in R[x]. Let L be an algebraic closure of K and let f(x) factor as $\prod (x - \theta_i)$ in L.

- (1) Let $g(x) = x^n + g_{n-1}x^{n-1} + \cdots + g_1x + g_0$ be a monic polynomial in L[x] dividing f(x). Show that the coefficients g_i are integral over R.
- (2) Now suppose that R is a UFD, and suppose that f(x) = g(x)h(x) with g and h monic polynomials in K[x]. Show that g(x) and h(x) are in R[x] (Hint: See Problem 5.)

This is a large fraction of Gauss's lemma, and working a bit harder this can be turned into a full proof of Gauss's lemma using the concept of integral elements.

Problem 7. This problem presents the basics of symmetric bilinear forms. Let k be a field of **characteristic not equal to** 2 and let V be a vector space over k. Let $\langle , \rangle : V \times V \to k$ be a symmetric bilinear form, meaning that $\langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$, $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$, $\langle cv, w \rangle = \langle v, cw \rangle = c \langle v, w \rangle$ and $\langle v, w \rangle = \langle w, v \rangle$.

- (1) Suppose that $\langle v, v \rangle = 0$ for all v in V. Show that $\langle v, w \rangle = 0$ for all v and $w \in V$.
- (2) Let $\langle , \rangle : V \times V \to k$ be a symmetric bilinear form and let $v \in V$ with $\langle v, v \rangle \neq 0$. Set $v^{\perp} = \{ w \in V : \langle v, w \rangle = 0 \}$. Show that $V = kv \oplus v^{\perp}$.
- (3) Let dim $V < \infty$. Show that V has a basis v_1, \ldots, v_n such that $\langle v_i, v_j \rangle = 0$ for $i \neq j$.

Given two bilinear forms \langle , \rangle_1 and \langle , \rangle_2 on V, we say that they are isomorphic if there is an automorphism $\phi: V \to V$ such that $\langle v_1, v_2 \rangle_1 = \langle \phi(v_1), \phi(v_2) \rangle_2$.

(4) Consider the three symmetric bilinear forms

on \mathbb{R}^2 . Show that these are not isomorphic.

(5) Now let k be the field with 3 elements. Define bilinear forms (,)₊₊, (,)₊₋ and (,)₋₋ on k² as above. Two of them are isomorphic to each other; which ones?