PROBLEM SET TWO: DUE SEPTEMBER 22

Problem 1. Remember to go to plan an hour to go to Gradescope and do Practice QR Exam 2.

Problem 2. Write up complete solutions to **two** of the following problems from class: 6.4, 7.3, 7.4, 7.5, 8.2, 8.3

Problem 3. We recall that an element R of a ring e is called idempotent if $e^2 = e$. A collection of idempotents (e_1, e_2, \ldots, e_n) is called *orthogonal* if $e_i e_j = 0$ for $i \neq j$. A collection of orthogonal idempotents is called *complete* if $\sum e_i = 1$.

- (1) Let R be a ring and let (e_1, e_2, \dots, e_n) be a complete collection of orthogonal idempotents. Show that, as an abelian group, $R = \bigoplus_{i,j} e_i R e_j$.
- (2) If $f \in e_i Re_j$ and g is in $e_k Re_\ell$, what can you say about where fg lies in the decomposition $R = \bigoplus_{i,j} e_i Re_j$? Can you use this to write elements of R as matrices in a useful way?
- (3) Suppose that e_1, e_2, \ldots, e_n are *commuting* orthogonal idempotents. Consider the 2^n products of the form $f_1 f_2 \cdots f_n$ where each f_i is either e_i or $1 e_i$. Show that these 2^n products are a complete collection of orthogonal idempotents.
- (4) Suppose that (e₁, e₂,..., e_n) is a complete collection of orthogonal idempotents, all of which are *central* in the ring R. (Meaning that re_i = e_ir for all r ∈ R.) Show that R is isomorphic, as a ring, to ∏ⁿ_{i=1} e_iRe_i.

Problem 4. Let R be a commutative ring. R is called *local* if R has precisely one maximal ideal. Show that a ring A is local if and only if the set of non-units in A forms an ideal of A.

Problem 5. This problem displays some applications of the Chinese Remainder Theorem over \mathbb{Z} .

- (1) Let n be a positive integer with prime factorization $n = \prod p_j^{e_j}$. Give a formula for the number of ordered pairs $(a, b) \in \{0, 1, 2, \dots, n-1\}^2$ such that GCD(a, b, n) = 1.
- (2) An integer n is called squarefree if it is not divisible by k^2 for any k > 1. Show that there is some integer N such that N, N + 1, ..., N + 2019 are all **not** squarefree.
- (3) Find an integer c, which is even and not divisible by 5, such that $5^k + c$ is **not** prime for any positive integer k. Feel free to use a computer algebra system to help.

Problem 6. Let *R* be a ring, and let *A*, *B* and *C* be *R*-modules. Suppose that we have a short exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$, meaning that α is injective, β is surjective and $\operatorname{Ker}(\beta) = \operatorname{Im}(\alpha)$.

- (1) Suppose that we have a map $\rho: B \to A$, satisfying $\rho \circ \alpha = \mathrm{Id}_A$. Show that $B \cong A \oplus C$.
- (2) Suppose that we have a map $\sigma: C \to B$, satisfying $\beta \circ \sigma = \mathrm{Id}_C$. Show that $B \cong A \oplus C$.

Problem 7. Let *R* be the ring of integer quaternions: *R* is a free \mathbb{Z} -module with basis 1, *i*, *j*, *k*, and multiplication $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i and ki = -ik = j. Let *p* be an odd positive prime integer.

- (1) Show that there are integers u and v with $u^2 + v^2 + 1 \equiv 0 \mod p$. (Hint: Pigeonhole principle.)
- (2) Show that there is a well-defined map of rings $R/pR \longrightarrow \operatorname{Mat}_{2\times 2}(\mathbb{Z}/p\mathbb{Z})$ with $i \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $j \mapsto \begin{bmatrix} u & v \\ v & -u \end{bmatrix}$.
- (3) Show that the map in (2) is an isomorphism.
- (4) Show that R has a left ideal J with $|R/J| = p^2$.