PROBLEM SET THREE: DUE SEPTEMBER 29

Problem 1. Remember to go to plan an hour to go to Gradescope and do Practice QR Exam 3.

Problem 2. Write up complete solutions to **two** of the following problems from class: 9.1, 9.6, 10.1, 10.5, 10.6, 11.1, 11.2, 11.5

Problem 3. Let R be a finite ring, and let |R| factor as $\prod p^{a_p}$. Show that there are rings R_p , for the various primes p dividing N, such that $|R_p| = p^{a_p}$ and $R \cong \prod R_p$.

Problem 4. Describe all simple modules for the following rings:

- (1) $\mathbb{Z}/15\mathbb{Z}$.
- (2) The ring $Mat_{2\times 2}(\mathbb{R})$ of 2×2 matrices with entries in \mathbb{R} .
- (3) The subring $\{ \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \}$ of $Mat_{2 \times 2}(\mathbb{R})$.

Problem 5. For the given ring R and module M, give a composition series of M:

- (1) $R = \mathbb{Z}, M = \mathbb{Z}/4\mathbb{Z}$. Done in class.
- (2) $R = \mathbb{Z}, M = (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$. Done in class.
- (3) $R = \mathbb{R}[x, y], M = R/\langle x^2, xy, y^2 \rangle.$
- (4) $R = \mathbb{R}[S_3], M = \mathbb{R}^3$, where the symmetric group S_3 permutes the coordinates in \mathbb{R}^3 .
- (5) $R = (\mathbb{Z}/3\mathbb{Z})[S_3], M = (\mathbb{Z}/3\mathbb{Z})^3$, where the symmetric group S_3 permutes the coordinates in $(\mathbb{Z}/3\mathbb{Z})^3$.

Problem 6. (Schur's lemma, continued) Let k be a field and let R be a ring which contains k in its center, meaning that, for $a \in k$ and $r \in R$, we have ar = ra. Let S be a simple R-module which is finite dimensional as a k-vector space. Let $\phi : S \to S$ be an endomorphism of S.

- (1) Let f(x) be the minimal polynomial of the k-linear map ϕ . Show that f(x) is irreducible in k[x].
- (2) Suppose that k is algebraically closed. Show that there is a scalar $c \in k$ such that $\phi(v) = cv$ for all $v \in S$.

Problem 7. Let *R* be a ring, let *M* be an *R*-module and let *E* be the endomorphism ring $\text{End}_R(M) = \text{Hom}_R(M, M)$. Show that *M* decomposes as $M_1 \oplus M_2$, with M_1 and M_2 both nonzero, if and only if *E* contains an idempotent other than 0 and 1.

Problem 8. Let R be a ring, let M and N be R-modules and let $\alpha : M \to N$ and $\beta : N \to M$ be module homomorphisms such that $\beta \circ \alpha = \text{Id}_M$. Show that there is a submodule K of N such that $N \cong M \oplus K$.

Problem 9. Postponed to problem set 4. Let *R* be a ring and let *M* be an *R*-module of finite length. Let ϕ be an endomorphism of *M*. Define $I_n = \text{Image}(\phi^n)$ and define $K_n = \text{Ker}(\phi^n)$.

- (1) Show that there is a positive integer N such that $I_N = I_{N+1} = I_{N+2} = \cdots$ and $K_N = K_{N+1} = K_{N+2} = \cdots$
- (2) For the *N* above, show that $M = I_N \oplus K_N$.
- (3) Suppose that M cannot be written as a direct sum $M_1 \oplus M_2$, with M_1 and M_2 both nonzero modules. Show that every endomorphism of M is either nilpotent or invertible.