Problem 1. Remember to go to plan an hour to go to Gradescope and do Practice QR Exam 9.

Problem 2. (This problem replaces the usual worksheet write ups:) Let k be a field.

- (1) Let $f(x) = x^d + f_{d-1}x^{d-1} + \cdots + f_1x + f_0$ be a monic polynomial with coefficients in x. Show that $x^{d-1}, x^{d-2}, \ldots, x$, 1 is a basis of k[x]/f(x)k[x] and write down the matrix for multiplication by x in that basis.
- (2) Let $\lambda \in k$. Show that $(x \lambda)^{n-1}$, $(x \lambda)^{n-2}$, ..., $x \lambda$, 1 is a basis of $k[x]/(x \lambda)^n k[x]$ and write down the matrix for multiplication by x in that basis.

Problem 3. Let R be a PID; let M be a submodule of $R^{\oplus n}$. Show that $M \cong R^{\oplus m}$ for some $m \leq n$.

Problem 4. Let k be an algebraically closed field. Let X be an $n \times n$ matrix with entries in k, and let the Jordan blocks of X be $J_{n_1}(\lambda_1), J_{n_2}(\lambda_2), \ldots, J_{n_r}(\lambda_r)$. Express the following quantities in terms of the λ_j and n_j and prove your answer to be correct.

- (1) The characteristic polynomial of X.
- (2) The minimal polynomial of X.
- (3) The dimension of $\text{Ker}(X \lambda \text{Id})$.

Problem 5. Consider the nilpotent matrix whose powers are shown below:

$$X = \begin{bmatrix} -1 & -7 & -2 & -2 \\ 0 & 3 & 1 & 1 \\ 0 & -6 & -2 & -2 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad X^2 = \begin{bmatrix} -1 & -4 & -1 & -1 \\ 1 & 4 & 1 & 1 \\ -2 & -8 & -2 & -2 \\ -1 & -4 & -1 & -1 \end{bmatrix} \qquad X^3 = 0$$
$$\operatorname{rank}(X) = 2 \qquad \operatorname{rank}(X^2) = 1 \qquad \operatorname{rank}(X^3) = 0$$

Find the Jordan normal form of X.

Problem 6. Let R be a PID. The first part of this problem is Problem 8, part 2, with a hint, so you may simply write "I solved this last time" if you did so.

- (1) Let $A(x) = \sum a_i x^i$ and $B(x) = \sum b_j x^j$ be polynomials in R[x] and let $C(x) = \sum c_k x^k$ be their product. Show that $GCD(c_j) = GCD(a_i) GCD(b_k)$. Hint: Show that, if a prime p divides all of the c_k , then either p divides all of the a_i or else p divides all of the b_j .
- (2) Let K be the field of fractions of R. Let C(x) be a polynomial in R[x] which factors as A(x)B(x) for A and B in K[x]. Show that there is a nonzero scalar φ in K such that φA(x) ∈ R[x] and φ⁻¹B(x) ∈ R[x].
- (3) (Eisenstein's criterion) Let p be a prime and let $f(x) = f_n x^n + \cdots + f_1 x + f_0$ be a polynomial with coefficients in R[x]. Suppose that p does not divide f_n , that p does divide $f_{n-1}, f_{n-2}, \ldots, f_1, f_0$ and p^2 does not divide f_0 . Show that f(x) is irreducible.

Problem 7. We return to Problem 7 of Problem Set 7 to show how it can be used. Let $R = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$. Define a norm on R by $N\left(\frac{u+v\sqrt{-19}}{2}\right) = \frac{u^2+19v^2}{4}$.

- (1) Show that, for all a and $b \in R$, with $b \neq 0$, either there exist q and r with a = bq + r and N(r) < N(b) or there exist q and r with 2a = bq + r and N(r) < N(b). Hint: Adapt the criterion from Worksheet Problem 16.3.
- (2) Show that (2) is a prime ideal of R.
- (3) Conclude that R is a PID.

Problem 8. Let R be a Noetherian UFD in which all prime ideals are maximal. Using the criterion of Problem Set 6, Problem 9, show that R is a PID. This problem is removed because the hint was bad. The main result is true: If R is a UFD where all prime ideals are maximal then R is a PID. (One doesn't even need Noetherian here.) The hint I provided was a bad one. I saw at least two students in office hours who found proofs ignoring the hint; on a future problem set, I'll bring this back with a better hint.