THE EUCLIDEAN ALGORITHM

To find the greatest common measure of two numbers. . . (Euclid, *The Elements*, Book VII, Proposition 2)

Starting with two positive integers x_0 and x_1 x_1 , the Euclidean algorithm¹ recursively defines two sequences of integers x_0 , x_1, x_2, \ldots and a_1, a_2, a_3, \ldots as follows: For $n \geq 2$, we have

$$
x_n = x_{n-2} - a_{n-1}x_{n-1}
$$

with $0 \leq x_n < x_{n-1}$. The algorithm terminates when $x_n = 0$.

- (61) Compute the sequences x_n and a_n with $x_0 = 321$ and $x_1 = 123$.
- (62) Show that $GCD(x_0, x_1) = GCD(x_1, x_2) = \cdots = GCD(x_{n-1}, x_n) = x_{n-1}$, where $x_n = 0$. Let this common GCD be *g*.
- (63) Show that there is an elementary matrix *E* with $E\left[\begin{array}{c} x_{n-2} \\ x_{n-1} \end{array}\right] = \left[\begin{array}{c} x_n \\ x_{n-1} \end{array}\right]$.
- (64) Show that there is a product of elementary matrices *F*, with $F\begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} g \\ 0 \end{bmatrix}$.
- (65) Show that there exist sequences b_k and c_k such that $b_k x_k + c_k x_{k+1} = g$ and show how to compute the *b*'s and *c*'s using the *a*'s.
- (66) Demonstrate that your method works by finding *b* and *c* such that $b \cdot 321 + c \cdot 123 = 3$.

¹First recorded by Euclid, a Greek mathematician who lived in roughly 300 BCE.