MODULES

Vocabulary: module, module homomorphism, direct sum, endomorphism ring, bilinear Groups are meant to act on sets. Similarly, rings are meant to act on abelian groups.

Definiton. Suppose R is a ring. A *left* R-module is a set M with two operations:

- $+: M \times M \to M$ (called *addition*) and
- $*: R \times M \to M$ (called *scalar multiplication*)

and an element 0_M satisfying the following axioms:

M1: $(M, +, 0_M)$ is an abelian group,

M2: (r+s) * m = r * m + s * m for all $r, s \in R$ and $m \in M$

M3: (rs) * m = r * (s * m) for all $r, s \in R$ and $m \in M$

M4: r * (m + n) = r * m + r * n for all $r \in R$ and $m, n \in M$

M5: $1_R * m = m$ for all $m \in M$.

"M is an R-module" will mean "M is a left R-module".

^{*a*}As you might guess, some people do not impose this last condition.

The map $*: R \times M \to M$ is called an *action* of R on M and the elements of R are often called *scalars*.

- (11) Show that \mathbb{Z}^2 is a left-Mat_{2×2}(\mathbb{Z})-module by having $X \in Mat_{2\times 2}(\mathbb{Z})$ act on \mathbb{Z}^2 by taking $v \in \mathbb{Z}^2$ to Xv.
- (12) Formulate the definition of a right *R*-module (the scalar multiplication map will look like $M \times R \to M$). Show that \mathbb{Z}^2 is a right-Mat_{2×2}(\mathbb{Z})-module by having $X \in Mat_{2\times 2}(\mathbb{Z})$ act on \mathbb{Z}^2 by taking $v \in \mathbb{Z}^2$ to $X^T v$.
- (13) Suppose R is a commutative ring. Show that the polynomial ring $R[x_1, x_2, ..., x_n]$ is an R-module. Do we need to assume that R is commutative?
- (14) What happens if we don't assume that $+_M$ is commutative? Hint: Consider $(1_R + 1_R) * (u +_M v)$.

Definition. Suppose R is a ring and M and N are R-modules. A function $g: M \to N$ is called an R-module homomorphism provided that

- g is a group homomorphism and
- g(rm) = rg(m) for all $r \in R$ and $m \in M$.

The set of *R*-module homomorphisms from *M* to *N* is denoted $\operatorname{Hom}_R(M, N)$ or $\operatorname{Hom}_{R-\operatorname{mod}}(M, N)$. We set $\operatorname{End}_R(M) := \operatorname{Hom}_R(M, M)$ and call $\operatorname{End}_R(M)$ the *endomorphism ring of M*.

(15) Suppose R is a commutative ring and M is an R-module. Show that there is a "natural" map of rings $R \to \operatorname{End}_R(M)$. What if R is not commutative?

Definition. Suppose R is a ring and M and N are R-modules. The *direct sum* of M and N, written $M \oplus N$, is the R-module defined as follows: An element of $M \oplus N$ is an ordered pair (m, n) with $m \in M$ and $n \in N$. We have $(m_1, n_1) + (m_2, n_2) = (m_1 + m_2, n_1 + n_2), r(m, n) = (rm, rn).$

- (16) Check that $M \oplus N$ is an *R*-module.
- (17) Let M_1, M_2, M, N_1, N_2 and N be R-modules. Show that $\operatorname{Hom}_R(M_1 \oplus M_2, N) \cong \operatorname{Hom}_R(M_1, N) \times \operatorname{Hom}_R(M_2, N)$ and $\operatorname{Hom}_R(M, N_1 \oplus N_2) \cong \operatorname{Hom}_R(M, N_1) \times \operatorname{Hom}_R(M, N_2)$ as abelian groups.
- (18) Let $L_1, L_2, \ldots, L_p, M_1, M_2, \ldots, M_q$ and N_1, N_2, \ldots, N_r be *R*-modules, and let $L = \bigoplus L_i, M = \bigoplus M_j$ and $N = \bigoplus N_k$. Describe a way to write elements of $\operatorname{Hom}_R(L, M)$, $\operatorname{Hom}_R(M, N)$ and $\operatorname{Hom}_R(L, N)$ as matrices, so that the composition map $\operatorname{Hom}_R(L, M) \times \operatorname{Hom}_R(M, N) \longrightarrow \operatorname{Hom}_R(L, N)$ corresponds to matrix multiplication.

Definiton. Let *R* be a commutative ring and let *A*, *B* and *C* be *R*-modules. A map $\langle , \rangle : A \times B \to C$ is called *bilinear* or *R*-*bilinear* if

- $\langle a_1 + a_2, b \rangle = \langle a_1, b \rangle + \langle a_2, b \rangle.$
- $\langle a, b_1 + b_2 \rangle = \langle a, b_1 \rangle + \langle a, b_2 \rangle.$
- $r * \langle a, b \rangle = \langle r * a, b \rangle = \langle a, r * b \rangle.$

where a, a_1 and a_2 are in A, b, b_1 and b_2 are in B, and r is in 0.

(19) In the above definition, label every + and * with a subscript A, B or C as appropriate. This sort of abuse of notation is frequent in algebraic writing; you should get used to it, but you should also always be able to fill in the missing symbols if needed.