CLASSIFICATION OF FINITELY GENERATED MODULES OVER A PID

Throughout this worksheet, let R be a PID.

- (103) Let $X \in Mat_{m \times n}(R)$ and let $(d_1, d_2, \ldots, d_{\min(m,n)})$ be the invariant factors of X.
 - (a) Show that $R^m/XR^n \cong \bigoplus R/d_i R \oplus R^{m-\min(m,n)}$.
 - (b) Show that $\operatorname{Ker}(X) \cong R^{\#\{j:d_j=0\}+n-\min(m,n)}$.
- (104) Let S be a ring and let M be a finitely generated S-module.
 - (a) Show that there is a surjection $S^{\oplus m} \rightarrow M$ for some m.
 - (b) Suppose that S is Noetherian (for example, every PID is Noetherian). Show that there is a surjection $S^n \to \text{Ker}(S^m \to M)$ for some n.
 - (c) With hypotheses and assumptions as in the previous part, show that there is an $m \times n$ matrix X with $M \cong S^m/XS^n$.
- (105) (Classification of modules over a PID: Elementary divisor form) Show that every finitely generated *R*-module M is of the form $\bigoplus R/d_jR$ for some nonunits d_1, d_2, \ldots, d_k in R with $d_1|d_2|\cdots|d_k$.
- (106) (Classification of modules over a PID: Prime power form) Show that every finitely generated *R*-module *M* is of the form $R^{\oplus r} \oplus \bigoplus R/p_j^{e_j}R$ for some nonnegative integer *r*, some sequence of prime elements p_j and some sequence of positive integers e_j .
- (107) Let M be a finitely generated R-module.
 - (a) Show that the d_1, d_2, \ldots, d_k in Problem 105 are unique up to multiplication by units.
 - (b) Show that the r, p_j and e_j in Problem 106 are unique up to rearrangement and up to multiplying the p_j by units.

Hint for both parts: One approach is to study M/qM for various choices of q.

Let's see what this say for some particular PID's:

- (108) Let k be a field, then k is also a PID. What have we proved about finitely generated k-modules?
- (109) A \mathbb{Z} -module is the same thing as an abelian group.
 - (a) What have we proved about finitely generated abelian groups?
 - (b) Consider the matrices below as maps $\mathbb{Z}^n \to \mathbb{Z}^m$. Describe their cokernels:

പ	[9 1]	2	-1	-1	
$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$	-1	2	-1	.
[0 3]		$\lfloor -1 \rfloor$	$-1 \\ 2 \\ -1$	2	