Problem Set 1: (Due Friday September 13)

Please see the course website for policy regarding collaboration and formatting your homework.

- (1) Suppose R is a ring and $a, b \in R$. Show that, if b is a unit and a divides b on both the left and the right, then a is a unit.
- (2) Let K be a field and let R be a subring of K. Let S be a nonempty subset of R, closed under multiplication and not containing 0. Let $S^{-1}R$ be the set of elements in K which can be written as $\frac{a}{b}$ with $a \in R$ and $b \in S$. Show that $S^{-1}R$ is a subring of K.
- (3) Let A be a ring. The *center* of A is $Z(A) := \{z \in A : az = za \text{ for all } a \in A\}$. Show that Z(A) is a subring of A.
- (4) What is the cardinality of the following rings?
 - (a) $\mathbb{Z}[x]/(6, 2x-1)$.
 - (b) $\mathbb{Z}[x]/(x^2-3,2x+4).$
- (5) Let k be a field. Show that the only ideals of k are (0) and k.
- (6) Let k be a field.
 - (a) Describe all left ideals of in the ring $Mat_{n \times n}(k)$ of $n \times n$ matrices with entries in k. Hint: Row reduction.
 - (b) Show that the only two-sided ideals of $Mat_{n \times n}(k)$ are (0) and $Mat_{n \times n}(k)$.
- (7) Let R be the set of all infinite sequences $(x_1, x_2, \ldots,)$ in \mathbb{R} for which $\lim_{n\to\infty} x_n$ exists. We define addition and multiplication on R by $(x_i) + (y_j) = (x_i + y_j)$ and $(x_j)(y_j) = (x_iy_j)$.
 - (a) Show that R is a commutative ring.
 - (b) Let \mathfrak{m} be the set of sequences (x_i) for which $\lim_{n\to\infty} x_n = 0$. Show that \mathfrak{m} is a maximal ideal of R.
- (8) Suppose k is a field and let R = k[t]. Show that R-modules are "the same" as k-vector spaces V equipped with a k-linear endomorphism $T: V \to V$. This question can be interpreted in two ways:
 - (for those who don't know what categories are) Give a bijection between isomorphism classes of *R*-modules and isomorphism classes of pairs (V, T); this includes defining when (V_1, T_1) and (V_2, T_2) are isomorphic.
 - (for those who know what categories are) Define the category of R-modules and the category of pairs (V, T), and give an equivalence between them.
- (9) Suppose k is a commutative ring. An k-algebra is an k-module A with an k-bilinear map $A \times A \rightarrow A$. Let k be a commutative ring and let A be any ring. Give a bijection between ways to consider A as an k-algebra, and ring maps $k \to Z(A)$. (This problem includes defining what "ways to consider A as an k-algebra" means.)
- (10) Suppose R is a ring. An element $e \in R$ is called *idempotent* if $e^2 = e$.
 - (a) Give an example of an idempotent, other than 0 and 1, in $Mat_{2\times 2}(\mathbb{Z})$.
 - (b) Give an example of an idempotent, other than 0 and 1, in $\mathbb{Z}/15\mathbb{Z}$.
 - (c) Let e be an idempotent of R and let $eRe = \{ere : r \in R\}$. Show that eRe is a ring, with respect to the addition and multiplication operations of R, where $0_{eRe} = 0_R$ and $1_{ere} = e$.
- (11) Let R be a ring. For $r \in R$ and $1 \le i \ne j \le n$ define the $n \times n$ matrix E(i, j, r) by

$$E(i, j, r)_{k\ell} = \begin{cases} 1 & \text{if } k = \ell, \\ r & \text{if } k = i \text{ and } j = \ell, \text{ or} \\ 0 & \text{otherwise.} \end{cases}$$

The matrix E(i, j, r) is known as an *elementary matrix*.

- (a) Suppose X is an $m \times n$ matrix. What is the effect of right multiplication by E(i, j, r) on X? Suppose Y is an $n \times m$ matrix. What is the effect of left multiplication by E(i, j, r) on Y? What is the inverse of E(i, j, r)?
- (b) Show that the matrix \$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\$] is a product of \$2 \times 2\$ elementary matrices.
 (c) Let u be a unit of R. Show that the matrix \$\begin{bmatrix} u & 0 \\ 0 & u^{-1} \end{bmatrix}\$] is a product of \$2 \times 2\$ elementary matrices.

Additional task: We will use Zorn's Lemma in this class. Please familiarize yourself with its statement and with how it is used to show that every nonzero ring has a maximal ideal. Good references are pages 907-909 in Dummit and Foote, Keith Conrad's notes https://kconrad.math.uconn.edu/blurbs/zorn1.pdf and Dan Grayson's proof at https://faculty.math.illinois.edu/~dan/ShortProofs/Zorn.pdf.