Problem Set 10 (Due Monday, December 9)

(75) Compute the following matrices in the obvious bases for the vector spaces involved:

(a)
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
 (b) Sym⁴ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (c) Alt² $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$

- (76) Recall that the rank of a linear map $\phi : V \to W$ is the dimension of $\phi(V)$. Show that Alt^k $\phi = 0$ if and only if the rank of ϕ is $\langle k$. Please don't use that the rank of a matrix is the size of its largest nonvanishing minor.
- (77) Let k be a field and let V and W be k-vector spaces. Let V^{\vee} be the dual vector space to V.
 - (a) Show that there is a linear map φ : V[∨] ⊗_k W → Hom_k(V, W) such that φ(λ ⊗ w)(v) = λ(v)w.
 (b) Show that the image of φ is precisely the linear maps V → W of finite rank. In particular, if dim V or
 - (b) Show that the image of ϕ is precisely the linear maps $V \to W$ of finite rank. In particular, if dim V or dim $W < \infty$, show that ϕ is surjective.
 - (c) Show that every element of $V^{\vee} \otimes_k W$ can be represented in the form $\sum_{j=1}^n \lambda_j \otimes w_j$ where w_1, w_2, \ldots, w_n are linearly independent.
 - (d) Show that ϕ is always injective. Hint: Write an element of the kernel in the form from Problem (77c).
- (78) In this problem, we will classify alternating bilinear forms on a finite dimensional vector space up to change of basis. Let k be a field, V a k-vector space and \langle , \rangle an alternating form on V.
 - (a) Show that, if $\langle , \rangle \neq 0$, there is a 2-dimensional subspace L of V such that \langle , \rangle restricts to a nondegenerate bilinear form on L.
 - (b) Let X be an $n \times n$ matrix with $X_{ij} = -X_{ji}$ and $X_{ii} = 0$. Show that there is an invertible matrix S such that SXS^T is of the form

for some number of $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ blocks and some number of 0's.

- (c) Find such an S for $k = \mathbb{Q}$ and $X = \begin{bmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{bmatrix}$.
- (d) Show that every alternating matrix has even rank.
- (e) Show that the determinant of an alternating matrix is always a square in k. The square root of det X (defined up to sign) is called the *Pfaffian* of X.
- (79) We defined $\operatorname{Sym}^d V$ as a quotient of $V^{\otimes d}$. Let $\operatorname{Sym}_d V \subseteq V^{\otimes d}$ be those tensors invariant under permutation of tensor factors. Some books define this subspace to be $\operatorname{Sym}^d V$ instead of the quotient that we use.
 - (a) Let V have basis e_1, e_2, \ldots, e_n . Give a basis of $\operatorname{Sym}_d V$ and show that $\operatorname{dim} \operatorname{Sym}_d V = \operatorname{dim} \operatorname{Sym}^d V$.
 - (b) For any linear map $\phi: V \to W$, define a linear map $\operatorname{Sym}_d \phi: \operatorname{Sym}_d V \to \operatorname{Sym}_d W$ such that the diagram

(c) If the characteristic of k is either 0 or else a prime p > d, show that the composition $\operatorname{Sym}_d V \hookrightarrow V^{\otimes d} \twoheadrightarrow \operatorname{Sym}^d V$ is an isomorphism.

Now, let k be a field with characteristic p.

- (d) Show that $\operatorname{Sym}^{p}\begin{bmatrix}1\\1\end{bmatrix} = \operatorname{Sym}^{p}\begin{bmatrix}0\\1\end{bmatrix} + \operatorname{Sym}^{p}\begin{bmatrix}0\\1\end{bmatrix}$ but $\operatorname{Sym}_{p}\begin{bmatrix}1\\1\end{bmatrix} \neq \operatorname{Sym}_{p}\begin{bmatrix}0\\0\end{bmatrix} + \operatorname{Sym}_{p}\begin{bmatrix}0\\1\end{bmatrix}$.
- (e) Show that there is no choice of isomorphisms such that

$$\begin{array}{ccc} \operatorname{Sym}_{p} V & \xrightarrow{\cong} & \operatorname{Sym}^{p} V \\ & & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

commute for all $\phi : V \to W$. You have shown that the functors Sym_p and Sym^p are not isomorphic. (80) Enjoy your winter break! This problem is due on January 8.