Problem Set 10 (Due Monday, December 9)

(75) Compute the following matrices in the obvious bases for the vector spaces involved:

$$
(a) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \otimes \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \qquad (b) \text{Sym}^4 \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad (c) \text{ Alt}^2 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}
$$

- (76) Recall that the rank of a linear map $\phi: V \to W$ is the dimension of $\phi(V)$. Show that Alt^k $\phi = 0$ if and only if the rank of ϕ is $\lt k$. Please don't use that the rank of a matrix is the size of its largest nonvanishing minor.
- (77) Let *k* be a field and let *V* and *W* be *k*-vector spaces. Let V^{\vee} be the dual vector space to *V*.
	- (a) Show that there is a linear map $\phi : V^{\vee} \otimes_k W \to \text{Hom}_k(V, W)$ such that $\phi(\lambda \otimes w)(v) = \lambda(v)w$.
	- (b) Show that the image of ϕ is precisely the linear maps $V \to W$ of finite rank. In particular, if dim *V* or $\dim W < \infty$, show that ϕ is surjective.
	- (c) Show that every element of $V^{\vee} \otimes_k W$ can be represented in the form $\sum_{j=1}^n \lambda_j \otimes w_j$ where w_1, w_2, \ldots, w_n are linearly independent.
	- (d) Show that ϕ is always injective. Hint: Write an element of the kernel in the form from Problem [\(77c\)](#page--1-0).
- (78) In this problem, we will classify alternating bilinear forms on a finite dimensional vector space up to change of basis. Let *k* be a field, *V* a *k*-vector space and \langle , \rangle an alternating form on *V*.
	- (a) Show that, if $\langle , \rangle \neq 0$, there is a 2-dimensional subspace *L* of *V* such that \langle , \rangle restricts to a nondegenerate bilinear form on *L*.
	- (b) Let *X* be an $n \times n$ matrix with $X_{ij} = -X_{ji}$ and $X_{ii} = 0$. Show that there is an invertible matrix *S* such that *SXS^T* is of the form

$$
\begin{bmatrix} 0 & -1 & & & & \\ 1 & 0 & & & & \\ & & 0 & -1 & & \\ & & & 1 & 0 & \\ & & & & \ddots & \\ & & & & & 0 \\ & & & & & & 0 \end{bmatrix}
$$

for some number of $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ blocks and some number of 0's.

- (c) Find such an *S* for $k = \mathbb{Q}$ and $X =$ $\begin{bmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{bmatrix}$
- (d) Show that every alternating matrix has even rank.
- (e) Show that the determinant of an alternating matrix is always a square in *k*. The square root of det *X* (defined up to sign) is called the *Pfaffian* of *X*.
- (79) We defined $\text{Sym}^d V$ as a quotient of $V^{\otimes d}$. Let $\text{Sym}_d V \subseteq V^{\otimes d}$ be those tensors invariant under permutation of tensor factors. Some books define this subspace to be $Sym^d V$ instead of the quotient that we use.

.

- (a) Let *V* have basis e_1, e_2, \ldots, e_n . Give a basis of $\text{Sym}_d V$ and show that $\dim \text{Sym}_d V = \dim \text{Sym}^d V$.
- (b) For any linear map $\phi : V \to W$, define a linear map $\text{Sym}_d \phi : \text{Sym}_d V \to \text{Sym}_d W$ such that the diagram

$$
\text{Sym}_d V \longrightarrow V^{\otimes d} \longrightarrow \text{Sym}^d V
$$
\n
$$
\begin{array}{c}\n\bigg| \text{Sym}_d \phi & \bigg| \phi^{\otimes d} & \text{Sym}^d \phi \\
\text{Sym}_d W \longrightarrow W^{\otimes d} & \text{Sym}^d W\n\end{array}
$$
\ncommutes.

(c) If the characteristic of *k* is either 0 or else a prime $p > d$, show that the composition $Sym_d V \hookrightarrow V^{\otimes d} \rightarrow$ $\text{Sym}^d V$ is an isomorphism.

Now, let *k* be a field with characteristic *p*.

- (d) Show that $\text{Sym}^p \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \text{Sym}^p \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \text{Sym}^p \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ but $\text{Sym}_p \begin{bmatrix} 1 \\ 1 \end{bmatrix} \neq \text{Sym}_p \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \text{Sym}_p \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- (e) Show that there is no choice of isomorphisms such that

$$
\operatorname{Sym}_p V \xrightarrow{\cong} \operatorname{Sym}^p V
$$

$$
\downarrow^{\operatorname{Sym}_p \phi} \qquad \qquad \downarrow^{\operatorname{Sym}^p \phi}
$$

$$
\operatorname{Sym}_p W \xrightarrow{\cong} \operatorname{Sym}^p W
$$

commute for all $\phi : V \to W$. You have shown that the functors Sym_n and Sym^p are not isomorphic. (80) Enjoy your winter break! This problem is due on January 8.