Problem Set 2 (Due Friday September 20)

Please see the course website for policy regarding collaboration and formatting your homework.

- (12) In Homework Problem [8,](#page-0-0) you gave a bijection between isomorphism classes of $k[t]$ modules and pairs (V, T) with *V* a *k*-vector space and \overline{T} a *k*-linear endomorphism.
	- (a) Let $M = k[t]/(t^3 2)k[t]$. Give an explicit 3×3 matrix for the corresponding *T*.
	- (b) Do $(\mathbb{R}^2, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})$ and $(\mathbb{R}^2, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix})$ correspond to isomorphic $\mathbb{R}[t]$ modules or not?
- (13) Let $f(x) = x^n + f_{n-1}x^{n-1} + \cdots + f_1x + f_0$ be a monic irreducible polynomial with coefficients in Z. Let θ be a root of $f(x)$ in $\mathbb C$ and let $\mathbb Z[\theta]$ be the subring of $\mathbb C$ generated by θ .
	- (a) Show that $\mathbb{Z}[x]/f(x)\mathbb{Z}[x] \cong \mathbb{Z}[\theta]$.
	- (b) Show that $\mathbb{Z}[\theta]$ is a free \mathbb{Z} -module with basis 1, θ , ..., θ^{n-1} . In other words, show that every element of $\mathbb{Z}[\theta]$ can be written in the form $\sum_{j=0}^{n-1} a_j \theta^j$ for $a_j \in Z$ in precisely one way.
	- (c) Let $R_3 = \mathbb{Z} \left[\frac{1+\sqrt{-3}}{2} \right]$ and $R_7 = \mathbb{Z} \left[\frac{1+\sqrt{-7}}{2} \right]$. Show that $R_3/2R_3$ is a field with four elements and that $R_7/2R_7 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$
- (14) Let *R* be a commutative ring. Let *S* be a subset of *R* which is closed under multiplication and such that for $s \in S$ and $r \in R$, if $sr = 0$ then $r = 0$. Define a relation \sim on $S \times R$ by $(s, r) \sim (s', r')$ if $sr' = s'r$.
	- (a) Show that \sim is an equivalence relation.
	- Let $S^{-1}R$ be the set of equivalence classes for \sim and write $s^{-1}r$ for the class of (s, r) in $S^{-1}R$. Define:

$$
s_1^{-1}r_1 + s_2^{-1}r_2 = (s_1s_2)^{-1}(s_2r_1 + s_1r_2) \qquad (s_1^{-1}r_1) \times (s_2^{-1}r_2) = (s_1s_2)^{-1}(r_1r_2).
$$

- (b) Show that these operations are well-defined maps $S^{-1}R \times S^{-1}R \longrightarrow S^{-1}R$.
- (c) Show that $(S^{-1}R, +, \times)$ is a commutative ring.

If *R* is an integral domain, and $S = R \setminus \{0\}$, then $S^{-1}R$ is called the *field of fractions* of *R*, and denoted Frac(*R*).

- (15) Let *R* be a commutative ring. *R* is called *local* if *R* has precisely one maximal ideal. Show that a ring *A* is local if and only if the set of non-units in *A* forms an ideal of *A*.
- (16) For two elements *u* and *v* in a ring *R*, will write uRv for $\{uv : r \in R\}$. Let *e* be idempotent in *R*; recall that this means $e^2 = e$. Recall that an element *z* of *R* is called central if $z = rz$ for all $r \in R$.
	- (a) Show that $1 e$ is idempotent.
	- (b) Show that, as abelian groups under the operation $+_R$, we have

$$
R = eRe \oplus eR(1-e) \oplus (1-e)Re \oplus (1-e)R(1-e).
$$

- (c) Suppose that *e* is a central idempotent. Show that $R \cong eRe \times (1 e)R(1 e)$ as rings.
- (d) Suppose that e_1, e_2, \ldots, e_n are central idempotents of *R*, obeying $\sum e_j = 1$ and $e_i e_j = 0$ for $i \neq j$. Show that $R \cong \prod e_j Re_j$ as rings.
- A set of idempotents $\{e_1, e_2, \ldots, e_n\}$ as in part [\(16d\)](#page--1-0) is called an *orthogonal idempotent decomposition*.
- (e) Let $\pi_1, \pi_2, \ldots, \pi_k$ be central idempotents of *R*. Let $\{e_1, e_2, \ldots, e_{2^k}\}$ be the set of all products $q_1q_2 \cdots q_k$ where each q_j is either π_j or $1 - \pi_j$. Show that $\{e_1, e_2, \ldots, e_{2^k}\}$ is an orthogonal idempotent decomposition. (17) This problem displays standard applications of the Chinese Remainder Theorem over Z.
	- (a) Let *n* be a positive integer with prime factorization $n = \prod p_j^{e_j}$. Give a formula for the number of ordered pairs $(a, b) \in \{0, 1, 2, ..., n-1\}^2$ such that $GCD(a, b, n) = 1$.
		- (b) An integer *n* is called squarefree if it is not divisible by k^2 for any $k > 1$. Show that there is some integer N such that $N, N + 1, \ldots, N + 2019$ are all **not** squarefree.
- (18) Let *R* be a commutative ring, let a_1, a_2, \ldots, a_n be elements of *R* such that $(a_1, \ldots, a_n) = R$. Let *M* be a left *R*-module such that $a_i a_j M = 0$ for $i \neq j$. Show that

$$
M = a_1 M \oplus a_2 M \oplus \cdots \oplus a_n M.
$$

- (19) Let *R* be the ring of integer quaternions: *R* is a free Z-module with basis 1, *i*, *j*, *k*, and multiplication $i^2 = j^2 = j$ $k^2 = -1$, $ij = -ji = k$, $jk = -kj = i$ and $ki = -ik = j$. Let *p* be an odd positive prime integer.
	- (a) Show that there are integers *u* and *v* with $u^2 + v^2 + 1 \equiv 0 \mod p$. (Hint: Pigeonhole principle.)
	- (b) Show that there is a well-defined map of rings $R/pR \longrightarrow \text{Mat}_{2\times 2}(\mathbb{Z}/p\mathbb{Z})$ with $i \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $j \mapsto \begin{bmatrix} u & v \\ v & -u \end{bmatrix}$.
	- (c) Show that the map in [\(19b\)](#page--1-1) is an isomorphism. (Hint: If you haven't used that *p* is odd, your proof is broken.)
	- (d) Show that *R* has a left ideal *J* with $|R/J| = p^2$.

 $¹$ It is possible to remove this condition; this will appear on a future problem set.</sup>