Problem Set 2 (Due Friday September 20)

Please see the course website for policy regarding collaboration and formatting your homework.

- (12) In Homework Problem 8, you gave a bijection between isomorphism classes of k[t] modules and pairs (V, T) with V a k-vector space and \overline{T} a k-linear endomorphism.
 - (a) Let $M = k[t]/(t^3 2)k[t]$. Give an explicit 3×3 matrix for the corresponding T. (b) Do $(\mathbb{R}^2, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})$ and $(\mathbb{R}^2, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix})$ correspond to isomorphic $\mathbb{R}[t]$ modules or not?
- (13) Let $f(x) = x^n + f_{n-1}x^{n-1} + \dots + f_1x + f_0$ be a monic irreducible polynomial with coefficients in \mathbb{Z} . Let θ be a root of f(x) in \mathbb{C} and let $\mathbb{Z}[\theta]$ be the subring of \mathbb{C} generated by θ .
 - (a) Show that $\mathbb{Z}[x]/f(x)\mathbb{Z}[x] \cong \mathbb{Z}[\theta]$.
 - (b) Show that $\mathbb{Z}[\theta]$ is a free \mathbb{Z} -module with basis 1, $\theta, \ldots, \theta^{n-1}$. In other words, show that every element of $\mathbb{Z}[\theta]$ can be written in the form $\sum_{j=0}^{n-1} a_j \theta^j$ for $a_j \in Z$ in precisely one way.
 - (c) Let $R_3 = \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ and $R_7 = \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$. Show that $R_3/2R_3$ is a field with four elements and that $R_7/2R_7 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$
- (14) Let R be a commutative ring. Let S be a subset of R which is closed under multiplication and such that I, for $s \in S$ and $r \in R$, if sr = 0 then r = 0. Define a relation \sim on $S \times R$ by $(s, r) \sim (s', r')$ if sr' = s'r.
 - (a) Show that \sim is an equivalence relation.
 - Let $S^{-1}R$ be the set of equivalence classes for \sim and write $s^{-1}r$ for the class of (s, r) in $S^{-1}R$. Define:

$$s_1^{-1}r_1 + s_2^{-1}r_2 = (s_1s_2)^{-1}(s_2r_1 + s_1r_2) \qquad (s_1^{-1}r_1) \times (s_2^{-1}r_2) = (s_1s_2)^{-1}(r_1r_2).$$

- (b) Show that these operations are well-defined maps $S^{-1}R \times S^{-1}R \longrightarrow S^{-1}R$.
- (c) Show that $(S^{-1}R, +, \times)$ is a commutative ring.
- If R is an integral domain, and $S = R \setminus \{0\}$, then $S^{-1}R$ is called the *field of fractions* of R, and denoted Frac(R).
- (15) Let R be a commutative ring. R is called *local* if R has precisely one maximal ideal. Show that a ring A is local if and only if the set of non-units in A forms an ideal of A.
- (16) For two elements u and v in a ring R, will write uRv for $\{urv : r \in R\}$. Let e be idempotent in R; recall that this means $e^2 = e$. Recall that an element z of R is called central if zr = rz for all $r \in R$.
 - (a) Show that 1 e is idempotent.
 - (b) Show that, as abelian groups under the operation $+_R$, we have

$$R = eRe \oplus eR(1-e) \oplus (1-e)Re \oplus (1-e)R(1-e).$$

- (c) Suppose that e is a central idempotent. Show that $R \cong eRe \times (1-e)R(1-e)$ as rings.
- (d) Suppose that e_1, e_2, \ldots, e_n are central idempotents of R, obeying $\sum e_j = 1$ and $e_i e_j = 0$ for $i \neq j$. Show that $R \cong \prod e_i Re_i$ as rings.
- A set of idempotents $\{e_1, e_2, \dots, e_n\}$ as in part (16d) is called an *orthogonal idempotent decomposition*.
- (e) Let $\pi_1, \pi_2, \ldots, \pi_k$ be central idempotents of R. Let $\{e_1, e_2, \ldots, e_{2^k}\}$ be the set of all products $q_1q_2\cdots q_k$ where each q_i is either π_i or $1 - \pi_i$. Show that $\{e_1, e_2, \dots, e_{2^k}\}$ is an orthogonal idempotent decomposition. (17) This problem displays standard applications of the Chinese Remainder Theorem over \mathbb{Z} .
 - (a) Let n be a positive integer with prime factorization $n = \prod p_i^{e_j}$. Give a formula for the number of ordered
 - pairs $(a, b) \in \{0, 1, 2, ..., n 1\}^2$ such that GCD(a, b, n) = 1.
 - (b) An integer n is called squarefree if it is not divisible by k^2 for any k > 1. Show that there is some integer N such that $N, N + 1, \dots, N + 2019$ are all **not** squarefree.
- (18) Let R be a commutative ring, let a_1, a_2, \ldots, a_n be elements of R such that $(a_1, \ldots, a_n) = R$. Let M be a left *R*-module such that $a_i a_j M = 0$ for $i \neq j$. Show that

$$M = a_1 M \oplus a_2 M \oplus \cdots \oplus a_n M.$$

- (19) Let R be the ring of integer quaternions: R is a free \mathbb{Z} -module with basis 1, i, j, k, and multiplication $i^2 = j^2 =$ $k^2 = -1$, ij = -ji = k, jk = -kj = i and ki = -ik = j. Let p be an odd positive prime integer.
 - (a) Show that there are integers u and v with $u^2 + v^2 + 1 \equiv 0 \mod p$. (Hint: Pigeonhole principle.)
 - (b) Show that there is a well-defined map of rings $R/pR \longrightarrow \operatorname{Mat}_{2\times 2}(\mathbb{Z}/p\mathbb{Z})$ with $i \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $j \mapsto \begin{bmatrix} u & v \\ v & -u \end{bmatrix}$.
 - (c) Show that the map in (19b) is an isomorphism. (Hint: If you haven't used that p is odd, your proof is broken.)
 - (d) Show that R has a left ideal J with $|R/J| = p^2$.

¹It is possible to remove this condition; this will appear on a future problem set.