Problem Set 3 (Due Friday September 27)

Please see the course website for policy regarding collaboration and formatting your homework.

- (20) Let *R* be a commutative ring and *P* a prime ideal such that R/P is finite. Show that *P* is maximal.
- (21) Let *R* be a finite ring, and let |*R*| factor as $\prod p^{a_p}$. Show that there are rings R_p , for the various primes *p* dividing *N*, such that $|R_p| = p^{a_p}$ and $R \cong \prod R_p$.
- (22) As promised, we revisit Problem [\(14\)](#page--1-0) without the hypothesis that the elements of *S* are not zero divisors. Let *R* be a commutative ring and let *S* be a subset of *R* which is closed under multiplication and contains 1. Define a relation \sim on *S* \times *R* by $(s, r) \sim (s', r')$ if there is an element *s*^{*n*} of *S* such that $s''s r' = s''s' r$.
	- (a) Show that \sim is an equivalence relation.
	- (b) Show that the simpler definition, $(s, r) \approx (s', r')$ if $sr' = s'r$, need not be an equivalence relation.
	- As before, we define $S^{-1}R$ to be $S \times R/\sim$. I won't make you write it out but, once again, $S^{-1}R$ is a ring.
	- (c) Give a simple description of $\{3^k : k \in \mathbb{Z}_{\geq 0}\}^{-1}(\mathbb{Z}/15\mathbb{Z})$.
	- (d) Show that the kernel of the map $r \mapsto 1^{-1}r$ from *R* to $S^{-1}R$ is $\{x \in R : \exists_{s \in S} sx = 0\}$.
	- (e) State and prove a universal property of $S^{-1}R$. In other words, your statement should look like "Given a commutative ring *R'*, and the following additional data ..., there is a unique map $S^{-1}R \to R'$ such that"
- (23) Let *R* be a commutative ring and let *P* be a prime ideal of *R*.
	- (a) Show that $R \setminus P := \{x \in R : x \notin P\}$ is closed under multiplication.
	- We define $R_P := (R \setminus P)^{-1}R$ and call R_P the *local ring* of P.
	- (b) Justify this terminology by showing that R_P is a local ring (see problem $\boxed{15}$).
- (24) An element *x* in a ring *R* is called *nilpotent* if there is a positive integer *N* such that $x^N = 0$.
	- (a) Show that, if *x* is nilpotent, then $1 + x$ is a unit.
	- (b) Show that, if *x* and *y* are nilpotents with $xy = yx$, then $x + y$ is nilpotent. Is this true if *x* and *y* do not commute?
	- (c) Show that if *R* is commutative, then the set of nilpotent elements in *R* form an ideal; it is called the *nilradical of R* and often denoted Nil(*R*).
- (25) Let *R* be a UFD.
	- (a) Let *A* and *B* be matrices with entries in *R*, of sizes $r \times s$ and $s \times t$ respectively, and let $C = AB$; we write A_{ij} , B_{jk} and C_{ik} for the entries of these matrices. Prove or disprove: $GCD(C_{ik}) = GCD(A_{ij}) GCD(B_{ik})$. (The left hand side is the GCD of all entries of *C*, and similarly for *A* and *B*.)
	- (b) Let $a(x) = \sum a_i x^i$ and $b(x) = \sum b_j x^j$ be polynomials with coefficients in R and let $c(x) = a(b)b(x) =$ $\sum c_k x^k$. Prove or disprove: $\text{GCD}(c_k) = \text{GCD}(a_i) \text{GCD}(b_j)$. (The left hand side is the GCD of all coefficients of $c(x)$, and similarly for $a(x)$ and $b(x)$.)
- (26) (a) Show that the ring of integers, \mathbb{Z} , is Noetherian.
	- (b) Any ring which contains a subfield *k* and is finite dimensional as a *k*-vector space. Here take the scalar multiplication from *k* by left multiplication, and show that *R* is left-Noetherian.
	- (c) Show that the polynomial ring *k*[*x*] is Noetherian, for any field *k*.
- (27) Show that the following rings are not Noetherian:
	- (a) The polynomial ring $k[x_1, x_2, \ldots]$ in infinitely many variables.
	- (b) $k[x, x^{1/2}, x^{1/4}, x^{1/8}, \cdots]$, for k any field. An element of this ring is a formal finite sum $\sum a_j x^{b_j/2^{n_j}}$.
	- (c) The subring of $k[x, y]$ generated by all monomials of the form $x^j y$.
- (28) Let *R* be a Noetherian ring and let *I* be a two-sided ideal. Show that *R/I* is Noetherian.
- (29) This problem provides a proof of Hilbert's basis theorem, which states: If *R* is a Noetherian commutative ring, then $R[x]$ is Noetherian. Problems $26c$, $26a$ and 28 , together with Hilbert's basis theorem, show that any commutative ring which is finitely generated over k or $\mathbb Z$ is Noetherian.

Let *I* be an ideal of $R[t]$; we will show that *I* is finitely generated. Define I_d to be the set of $f \in R$ such that there is an element of *I* of the form $fx^d + f_{d-1}x^{d-1} + \cdots + f_1t + f_0$.

- (a) Show that *I_d* is an ideal of *R* and that $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$.
- (b) Show that there is an index *r* such that $I_r = I_{r+1} = I_{r+2} = \cdots$. Show that I_r is finitely generated.

(c) Let *M* be the set of polynomials in *I* with degree $\leq r$. Show that *M* is finitely generated as an *R*-module.

- Let $f_1, f_2, ..., f_m$ generate I_r as an R-module and choose elements g_j of I of the form $g_j = f_j x^r +$ (lower order terms). Let h_1, h_2, \ldots, h_n generate *M* as an *R*-module.
	- (d) Show that $g_1, g_2, \ldots, g_m, h_1, h_2, \ldots, h_n$ generate *I* as an $R[x]$ module.