Problem Set 4 (Due Friday, October 4)

Please see the course website for policy regarding collaboration and formatting your homework.

- (30) In the ring $\mathbb{Z}[x]$, is 15 a unit, irreducible or a composite? What about in the ring $\mathbb{Q}[x]$?
- (31) In the ring $\mathbb{Z}[\sqrt{-13}]$ show that 2, 7, $1 + \sqrt{-13}$ and $1 \sqrt{-13}$ are irreducible. Which are prime?
- (32) Let R be a UFD. For p a prime of R and f a nonzero element of R, let $v_p(f)$ be the exponent of p in the unique factorization of f. We formally set $v_p(0) = \infty$. Show that, for f and $g \in R$, we have $v_p(1) = 0$, $v_p(f+g) \ge 0$ $\min(v_p(f), v_p(g))$ and $v_p(fg) = v_p(f) + v_p(g)$ with the obvious treatment of ∞ .
- (33) Let k be a field and let f(x) be an irreducible polynomial with coefficients in k. Show that k[x]/f(x)k[x] is a field.
- (34) Let A and B be commutative rings and $\phi : A \to B$ a ring homorphism:
 - (a) Let \mathfrak{p} be a prime ideal of B. Show that $\phi^{-1}(\mathfrak{p})$ is a prime ideal of A.
 - (b) Give an example where m is a maximal ideal of B but $\phi^{-1}(\mathfrak{m})$ is not a maximal ideal of A.
- (35) Let R be a commutative ring and let p be a prime ideal of R. Let $a(x) = \sum a_i x^i$ and $b(x) = \sum b_i x^j$ be polynomials with coefficients in R.
 - (a) Suppose that a(x) has at least one coefficient not in \mathfrak{p} , and that b(x) has at least one coefficient not in \mathfrak{p} . Show that a(x)b(x) has at least one coefficient not in p.
 - (b) If you didn't solve Problem 25b last time, try again now. In other words, let $a(x)b(x) = \sum c_k x^k$, assume R
 - is a UFD and show that $\operatorname{GCD}(c_k) = \operatorname{GCD}(a_i) \operatorname{GCD}(b_j)$. (c) Suppose that a(x) is of the form $x^d + \sum_{i=0}^{d-1} a_i x^i$ and that b(x) is of the form $x^e + \sum_{j=0}^{e-1} b_j x^j$. Let $a(x)b(x) = a_i x^{d-1} a_i x^{d-1} a_i x^{d-1} a_i x^{d-1} a_i x^{d-1}$. $x^{d+e} + \dots + \sum_{k=0}^{d+e-1} c_k x^k$. Suppose that d and e > 0 and that $c_k \in \mathfrak{p}$ for $0 \le k \le d+e-1$. Show that $c_0 \in \mathfrak{p}^2$. (The contrapositive of this result is known as Eisenstein's Irreducibility Criterion.)
- (36) Understanding how the Euclidean Algorithm works is pretty important, so do this exercise by hand (or at most, use a calculator/computer to check your arithmetic):
 - (a) Let g be the GCD of 2019 and 594. Compute g using the Euclidean algorithm.
 - (b) Find a product of elementary matrices E_1, E_2, \ldots, E_r such $E_1 E_2 \cdots E_r \begin{bmatrix} 2019\\594 \end{bmatrix} = \begin{bmatrix} g\\0 \end{bmatrix}$.
 - (c) Find integers x and y such that 2019x + 594y = g.
 - (d) In the ring $\mathbb{Z}[i]$, use the Euclidean algorithm to find the GCD g_2 of 1 + 13i and 85. Find Gaussian integers x and y such that $(1+13i)x + 85y = g_2$. Postponed until problem set 5.
 - (e) In the ring $\mathbb{Q}[t]$, use the Euclidean algorithm to find the GCD g_3 of $t^3 + t$ and $t^4 1$. Find polynomials x(t)and y(t) such that $(t^3 + t)x(t) + (t^4 - 1)y(t) = g_3$. Postponed until problem set 5.
- (37) Let k be a field and let $b_1(t), b_2(t), \ldots, b_r(t)$ be pairwise relatively prime polynomials in k[t] and set g(t) = $b_1(t)b_2(t)\cdots b_r(t).$
 - (a) Show that the polynomials $g(t)/b_i(t)$ generate k[t]/g(t)k[t] as a k[t]-module.
 - (b) Let $f(t) \in k[t]$. Show that there are polynomials $a_1(t), a_2(t), \ldots, a_r(t), c(t)$ in k[t] such that

$$\frac{f(t)}{g(t)} = \sum_{j=1}^{r} \frac{a_j(t)}{b_j(t)} + c(t).$$

Now you know why integration by partial fractions works!

- (38) Let R be a PID. Note: Parts of this problem will probably appear in class, but we'll use these lemmas a lot, so please write out the proofs anyway.
 - (a) Let x and $y \in R$ with GCD(x, y) = g. Show that there is a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with entries in R such that
 - (d) Let x and $y \in I$ and $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} g \\ 0 \end{bmatrix}$. (b) Let $x_1, x_2, \dots, x_n \in R$ with $\operatorname{GCD}(x_1, x_2, \dots, x_n) = g$. Show that there is an $n \times n$ matrix A with entries in R such that det A = 1 and $A \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T = \begin{bmatrix} g & 0 & \cdots & 0 \end{bmatrix}^T$. (Hint: Induct on n.)
 - (c) Let x and y be nonzero elements of R. Show that there are invertible 2×2 matrices U and V with

$$U\begin{bmatrix} x & 0\\ 0 & y \end{bmatrix} V = \begin{bmatrix} \operatorname{GCD}(x,y) & 0\\ 0 & \operatorname{LCM}(x,y) \end{bmatrix}.$$

Here $LCM(x, y) := \frac{xy}{GCD(x, y)}$.