Problem Set 4 (Due Friday, October 4)

Please see the course website for policy regarding collaboration and formatting your homework.

- (30) In the ring $\mathbb{Z}[x]$, is 15 a unit, irreducible or a composite? What about in the ring $\mathbb{Q}[x]$?
- (31) In the ring $\mathbb{Z}[\sqrt{-13}]$ show that 2, 7, $1 + \sqrt{-13}$ and $1 \sqrt{-13}$ are irreducible. Which are prime?
- (32) Let *R* be a UFD. For *p* a prime of *R* and *f* a nonzero element of *R*, let $v_p(f)$ be the exponent of *p* in the unique factorization of *f*. We formally set $v_p(0) = \infty$. Show that, for *f* and $g \in R$, we have $v_p(1) = 0$, $v_p(f + g) \ge$ $\min(v_p(f), v_p(g))$ and $v_p(fg) = v_p(f) + v_p(g)$ with the obvious treatment of ∞ .
- (33) Let *k* be a field and let $f(x)$ be an irreducible polynomial with coefficients in *k*. Show that $k[x]/f(x)k[x]$ is a field.
- (34) Let *A* and *B* be commutative rings and $\phi : A \rightarrow B$ a ring homorphism: (a) Let p be a prime ideal of *B*. Show that $\phi^{-1}(\mathfrak{p})$ is a prime ideal of *A*.
	- (b) Give an example where m is a maximal ideal of *B* but $\phi^{-1}(m)$ is not a maximal ideal of *A*.
- (35) Let *R* be a commutative ring and let p be a prime ideal of *R*. Let $a(x) = \sum a_i x^i$ and $b(x) = \sum b_i x^j$ be polynomials with coefficients in *R*.
	- (a) Suppose that $a(x)$ has at least one coefficient not in p, and that $b(x)$ has at least one coefficient not in p. Show that $a(x)b(x)$ has at least one coefficient not in p.
	- (b) If you didn't solve Problem [25b](#page--1-0) last time, try again now. In other words, let $a(x)b(x) = \sum c_k x^k$, assume *R* is a UFD and show that $\text{GCD}(c_k) = \text{GCD}(a_i) \text{GCD}(b_j)$.
	- (c) Suppose that $a(x)$ is of the form $x^d + \sum_{i=0}^{d-1} a_i x^i$ and that $b(x)$ is of the form $x^e + \sum_{j=0}^{e-1} b_j x^j$. Let $a(x)b(x) =$ $x^{d+e} + \cdots + \sum_{k=0}^{d+e-1} c_k x^k$. Suppose that d and $e > 0$ and that $c_k \in \mathfrak{p}$ for $0 \le k \le d+e-1$. Show that $c_0 \in \mathfrak{p}^2$. (The contrapositive of this result is known as Eisenstein's Irreducibility Criterion.)
- (36) Understanding how the Euclidean Algorithm works is pretty important, so do this exercise by hand (or at most, use a calculator/computer to check your arithmetic):
	- (a) Let *g* be the GCD of 2019 and 594. Compute *g* using the Euclidean algorithm.
	- (b) Find a product of elementary matrices E_1, E_2, \ldots, E_r such $E_1E_2 \cdots E_r \begin{bmatrix} 2019 \\ 594 \end{bmatrix} = \begin{bmatrix} g \\ 0 \end{bmatrix}$.
	- (c) Find integers *x* and *y* such that $2019x + 594y = g$.
	- (d) In the ring $\mathbb{Z}[i]$, use the Euclidean algorithm to find the GCD g_2 of $1 + 13i$ and 85. Find Gaussian integers x and *y* such that $(1 + 13i)x + 85y = g_2$. Postponed until problem set 5.
	- (e) In the ring $\mathbb{Q}[t]$, use the Euclidean algorithm to find the GCD g_3 of $t^3 + t$ and $t^4 1$. Find polynomials $x(t)$ and $y(t)$ such that $(t^3 + t)x(t) + (t^4 - 1)y(t) = g_3$. Postponed until problem set 5.
- (37) Let *k* be a field and let $b_1(t)$, $b_2(t)$, ..., $b_r(t)$ be pairwise relatively prime polynomials in $k[t]$ and set $g(t)$ = $b_1(t)b_2(t)\cdots b_r(t)$.
	- (a) Show that the polynomials $g(t)/b_i(t)$ generate $k[t]/g(t)k[t]$ as a $k[t]$ -module.
	- (b) Let $f(t) \in k[t]$. Show that there are polynomials $a_1(t), a_2(t), \ldots, a_r(t), c(t)$ in $k[t]$ such that

$$
\frac{f(t)}{g(t)} = \sum_{j=1}^{r} \frac{a_j(t)}{b_j(t)} + c(t).
$$

Now you know why integration by partial fractions works!

- (38) Let *R* be a PID. Note: Parts of this problem will probably appear in class, but we'll use these lemmas a lot, so please write out the proofs anyway.
	- (a) Let *x* and $y \in R$ with $GCD(x, y) = g$. Show that there is a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with entries in R such that $ad - bc = 1$ and $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} g \\ 0 \end{bmatrix}$.
	- (b) Let $x_1, x_2, \ldots, x_n \in R$ with $\text{GCD}(x_1, x_2, \ldots, x_n) = g$. Show that there is an $n \times n$ matrix A with entries in *R* such that $\det A = 1$ and $A[x_1 x_2 \cdots x_n]^T = [g \ 0 \ \cdots \ 0]^T$. (Hint: Induct on *n*.)
	- (c) Let *x* and *y* be nonzero elements of *R*. Show that there are invertible 2×2 matrices *U* and *V* with

$$
U\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} V = \begin{bmatrix} \text{GCD}(x, y) & 0 \\ 0 & \text{LCM}(x, y) \end{bmatrix}.
$$

$$
U := \frac{xy}{\text{GCD}(x, y)}.
$$

Here $LCM(x, y) := \frac{xy}{GCD(x, y)}$.