Problem Set 5 (Due Friday, October 11)

- (39) These are the problems carried over from the previous problem set.
 - (a) In the ring $\mathbb{Z}[i]$, use the Euclidean algorithm to find the GCD g_2 of 1 + 13i and 85. Find Gaussian integers x and y such that $(1 + 13i)x + 85y = g_2$.
 - (b) In the ring $\mathbb{Q}[t]$, use the Euclidean algorithm to find the GCD g_3 of $t^3 + t$ and $t^4 1$. Find polynomials x(t) and y(t) such that $(t^3 + t)x(t) + (t^4 1)y(t) = g_3$.
- (40) (a) Use the Euclidean algorithm to find polynomials f(t) and g(t) in $\mathbb{Q}[t]$ such that

$$f(t)(3t^2 - 3t - 1) + g(t)(t^3 - 2) = 1.$$

(b) Find rational numbers a, b, c such that

$$(3\sqrt[3]{4} - 3\sqrt[3]{2} - 1)^{-1} = a\sqrt[3]{4} + b\sqrt[3]{2} + c$$

Now you know how to rationalize denominators for algebraic numbers of degree greater than 2!

- (41) Let R be an integral domain and let I be a nonzero ideal of R. Cancelled, because problem was done in class.
- (a) Draw arrows indicating which implications exist between the following concepts. You need not provide proofs or counterexamples:

I is maximal	
I is of the form (f) for f prime	

- (b) How would your answers change if we assume that R is a UFD?
- (c) How would your answers change if we assume that R is a PID?
- (42) Let R be a commutative ring and x an element in R. Let $S = \{x^k : k \in \mathbb{Z}_{\geq 0}\} \subseteq R$.
 - (a) Show that x is nilpotent if and only if $S^{-1}R$ is the 0 ring.
 - (b) If x is not nilpotent, show that there is some prime ideal of R not containing x. Hint: Look at Problem 34.
- (43) Let k be a field, f(t) a nonzero polynomial with coefficients in k and a an element of k.
 - (a) Show that t a divides f(t) if and only if f(a) = 0.
 - (b) Show that f(t) has at most deg(f) roots in k.
 - (c) Suppose that the characteristic of k is not 2 and c is a nonzero element of k. Show that c has either 0 or 2 square roots in k.
- (44) Let L be the additive subgroup of \mathbb{Z}^2 generated by $\begin{bmatrix} 5\\4 \end{bmatrix}$ and $\begin{bmatrix} 2\\7 \end{bmatrix}$. Show that there is a unique subgroup M with $L \subset M \subset \mathbb{Z}^2$ and $|\mathbb{Z}^2/M| = 9$. Give generators of M.
- (45) Let R be a UFD in which every nonzero prime ideal is maximal. In this problem we will show that R is a PID.
 - (a) Let p_1 and p_2 be prime elements of R which generate distinct ideals. Show that (p_1) and (p_2) are comaximal.
 - (b) Let f_1 and f_2 be elements of R with $GCD(f_1, f_2) = 1$. Show that (f_1) and (f_2) are comaximal.
 - (c) Let f_1 and f_2 be elements of R with $GCD(f_1, f_2) = g$. Show that $(f_1, f_2) = (g)$.
 - (d) Let $f_1, f_2, ..., f_N$ be elements of R with $GCD(f_1, f_2, ..., f_N) = g$. Show that $(f_1, f_2, ..., f_N) = (g)$.
 - (e) Let I be an ideal of R with GCD(I) = g. Show that I = (g).
- (46) This problem deals with various quadratic subrings of \mathbb{C} and shows how to deal with rings that are "not quite Euclidean". Throughout, $N(a + b\sqrt{-D})$ denotes $a^2 + Db^2$, for $D \in \mathbb{Z}_{>0}$ and $a, b \in \mathbb{Q}$.
 - (a) Let D be in $\{1, 2, 3, 4, 5, 6\}$ and let a and $b \in \mathbb{Z}[\sqrt{-D}]$ with $b \neq 0$. Show that, either, there are q and $r \in \mathbb{Z}[\sqrt{-D}]$ with a = bq+r and N(r) < N(b), or else there are q and $r \in \mathbb{Z}[\sqrt{-D}]$ with 2a = bq+r and N(r) < N(b). Show that the same conclusion holds if a and b are in $\mathbb{Z}\left[\frac{1+\sqrt{-E}}{2}\right]$ with $E \in \{3, 7, 11, 15, 19, 23\}$. (Hint: First prove a modified version of worksheet problem (69).)
 - (b) Let R be $\mathbb{Z}[\sqrt{-D}]$ or $\mathbb{Z}\left[\frac{1+\sqrt{-E}}{2}\right]$ with D or E as above and let I be an ideal of R. Show that either I is principal, or else there is some $f \in R$ with $fR \subset I \subset (f/2)R$. Here (f/2)R may be a subset of \mathbb{C} not contained in R.
 - (c) We define two ideals I and J of R to be equivalent if there is some $c \in \operatorname{Frac}(R)$, $c \neq 0$, such that cI = J. Describe all equivalence classes of ideals in $\mathbb{Z}[\sqrt{-4}]$, $\mathbb{Z}[\sqrt{-5}]$ and $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$.

This problem is an instance of the *Minkowski bound*. Minkowski showed that, given any number ring R, there is a positive integer K such that, for every ideal I of R, there is an element $f \in I$ with $|fR/I| \le K$.