Problem Set 7 (Due Friday, November 8)

Remark: This problem set has a number of problems on older material which didn't fit until now. Don't go looking to connect everything to the newest stuff.

- (52) Let *k* be a field and *X* an $n \times n$ matrix over *k*. Let *I* be $\{g(x) \in k[x] : g(X) = 0\}$. Show that $I = (g)$ for some $g(x) \in k[x]$. This *g* is called the *minimal polynomial* of *X*. We generally normalize *g* to be monic.
- (53) Let *k* be a field, let $\lambda_1, \lambda_2, \ldots, \lambda_r$ be elements of *k* and let *B* be a positive integer. Show that there is a polynomial $g(x) \in k[x]$ such that $g(x) \equiv \lambda_j \mod (x - \lambda_j)^B$ for $1 \leq j \leq r$.
- (54) Suppose that *A* is a 5×5 complex matrix with minimal polynomial $A^5 A^3$.
	- (a) What is the Jordan form of *A*?
	- (b) What is the characteristic polynomial of $A²$?
	- (c) What is the minimal polynomial of A^2 ?
- (55) Let *k* be an algebraically closed field. Let *X* be an $n \times n$ matrix with entries in *k*, and let the Jordan blocks of *X* be $J_{n_1}(\lambda_1), J_{n_2}(\lambda_2), \ldots, J_{n_r}(\lambda_r)$. Express the following quantities in terms of the λ_j and n_j . (Some of you did some of this in your groups, but please repeat it here if you did.):
	- (a) The characteristic polynomial of *X*.
	- (b) The minimal polynomial of *X*, meaning the lowest degree polynomial $q(x)$ such that $q(X) = 0$.
	- (c) The dimension of $\text{Ker}(X \lambda \text{Id}).$
- (56) Let *R* be a UFD and let $S \subset R$ be a set containing 1, not containing 0 and closed under multiplication. In this problem, we will show that $S^{-1}R$ is a UFD. You may want to use the description of $S^{-1}R$ from Homework Problem (2).
	- (a) Let *P* be the set of primes dividing some element of *S* and let *T* be the set of products of primes in *P* (including the empty product, 1). Show that $S^{-1}R \cong T^{-1}R$.
	- (b) Let *p* be prime in *R*. Show that *p* is either prime or a unit in $T^{-1}R$.
	- (c) Let *q* be a prime of $T^{-1}R$. Show that *q* is of the form *up* where *p* is a prime of *R* and *u* is a unit of $T^{-1}R$.
	- (d) Show that $T^{-1}R$ is a UFD.
- (57) Let *R* be a PID. Let *M* be an $m \times n$ matrix with entries in *R*. Let *X* be the set of all elements of *R* which are of the form $\vec{x}^T M \vec{y}$ where $\vec{x} \in R^m$ and $\vec{y} \in R^n$. Show that *X* is an ideal of *R*.
- (58) Let *R* be an integral domain such that, for every nonzero ideal *I*, the quotient R/I is finite. Let *A* be an $n \times n$ matrix with entries in *R*. In this problem, we will show that $|R^n/AR^n| = |R/(\det A)R|$. Thanks to "Max" at https://math.stackexchange.com/questions/3389832 for suggesting this approach. We write *K* for Frac (R) . For $A \in Mat_{n \times n}(R)$ a matrix with det $A \neq 0$, define $D_n(A) = |R^n/AR^n|$.
	- (a) Show that $D_n(AC) = D_n(A)D_n(C)$. Hint: Look at homework problem $\overline{51c}$.
	- (b) For $A \in GL_n(K)$, let M be a nonzero element of R such MA has entries in R. Show that the rational number $M^{-n}D_n(MA)$ does not depend on the choice of *M*. Define $D_n(A) = M^{-n}D_n(MA)$, and show that we have $D_n(AC) = D_n(A)D_n(C)$ for matrices *A* and *C* in $GL_n(K)$.
	- (c) For *E* an elementary matrix with entries in *K*, show that $D_n(E) = 1$. (In other words, $E = E(i, j, r)$ for $r \in K$, as in problem $\boxed{11}$. Remember, we don't know that the off diagonal entry of *E* is in *R*.
	- (d) For a diagonal matrix *T* with entries in *K*, show that $D_n(T) = D_1([\det T])$. To be clear, $[\det T]$ is the 1×1 matrix whose entry is det *T*.
	- (e) Show that $D_n(A) = D_1([\det A])$ for any $A \in GL_n(K)$.
- (59) Let *R* be a ring. A left *R*-module *S* is called *simple* if $S \neq 0$ and *S* has no submodules other than 0 and *S*. A left *R*-module *M* is said to have *finite length* if there is a chain of submodules $0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_\ell = M$ such that M_{i+1}/M_i is simple for $0 \le i \le \ell$.
	- (a) Suppose that *R* is an associative unital *k*-algebra for some field $k¹$ and let *M* is finite dimensional as a *k*-vector space. Show that *M* is a finite length *R*-module. (Hint: Choose a chain $0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_\ell =$ *M* with ℓ as large as possible, and remember to justify that there is a maximum such ℓ .)
	- In general, "finite length" can be thought of as a generalization of "finite dimensional vector space". Let $0 \to K \to$ $M \to Q \to 0$ be a short exact sequence of *R*-modules.
	- (b) Suppose that *K* and *Q* have finite length. Show that *M* has finite length.
	- (c) Suppose that *M* has finite length. Show that *K* has finite length.
	- (d) Suppose that *M* has finite length. Show that *Q* has finite length.

¹In other words, (see problem $\left|9\right|$ let *R* be a ring, let *k* be a field which is also a subring of the center of *R*.