Problem Set 8 (Due Friday, November 15)

Please see the course website for policy regarding collaboration and formatting your homework.

(60) Consider the nilpotent matrix whose powers are shown below:

$$X = \begin{bmatrix} -1 & -7 & -2 & -2\\ 0 & 3 & 1 & 1\\ 0 & -6 & -2 & -2\\ 1 & 1 & 0 & 0 \end{bmatrix} \quad X^2 = \begin{bmatrix} -1 & -4 & -1 & -1\\ 1 & 4 & 1 & 1\\ -2 & -8 & -2 & -2\\ -1 & -4 & -1 & -1 \end{bmatrix} \qquad X^3 = 0$$

rank(X) = 2 rank(X²) = 1 rank(X³) = 0

- (a) Compute the Jordan normal form of X. Suppose that S is a matrix with columns $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, $\vec{v_4}$ such that $S^{-1}XS$ is in Jordan normal form, with the larger blocks sorted before the smaller ones. Express the following quantities in terms of $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, $\vec{v_4}$:
- (b) $\operatorname{Ker}(X)$ and $\operatorname{Ker}(X^2)$.
- (c) $\operatorname{Im}(X)$ and $\operatorname{Im}(X^2)$.
- (d) The intersections $\operatorname{Im}(X) \cap \operatorname{Ker}(X)$, $\operatorname{Im}(X) \cap \operatorname{Ker}(X^2)$, $\operatorname{Im}(X^2) \cap \operatorname{Ker}(X)$ and $\operatorname{Im}(X^2) \cap \operatorname{Ker}(X^2)$.
- (61) Let A be an $n \times n$ complex matrix. Show that A is nilpotent if and only if A and 2A are similar.
- (62) Suppose that A is a 7×7 complex matrix that obeys the polynomial relation $A^5 = 2A^4 + A^3$. Given that the rank of A is 5 and the trace is 4, what is the Jordan canonical form of A?
- (63) We didn't get to this one in class, so please do it now. Let $K \subset L$ be fields and let X be an $n \times n$ matrix with entries in K. Show that X has the same rational canonical form over K and over L.
- (64) Let k be a field. A square matrix X with entries in k is called *diagonalizable* if it is similar to a diagonal matrix.(a) Show that, if a matrix X is both diagonalizable and nilpotent, then it is zero.
 - (b) Let X and Y be square matrices with entries in k and let Z be the block matrix $\begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$. Show that Z is diagonalizable if and only if X and Y are both diagonalizable.
 - (c) Let X and Y be diagonalizable square matrices which commute with each other. Show that there is an invertible matrix S such that SXS^{-1} and SYS^{-1} are both diagonal. Hint: Start by reducing to the case that X is diagonal and remember to use the hypothesis that XY = YX.
- (65) Let k be an algebraically closed field¹ and let X be an $n \times n$ matrix with entries in k.
 - (a) Show that X can be written in the form D + N where D is diagonalizable, N is nilpotent, and DN = ND.
 - (b) Let λ_i be the eigenvalues of X, choose $B \ge n$ and let g(x) be the polynomial in Problem 53. Show that the D you have constructed is g(X).

The decomposition X = D + N is known as the Jordan-Chevalley decomposition of X. It is unique, and we will likely prove so on a future problem set.

(66) This problem is a sequel to Problem 59. You may use any results from that problem without proof. We recall the key definitions: Let R be a ring. A left R-module S is called *simple* if $S \neq 0$ and S has no submodules other than 0 and S. A left R-module M is said to have *finite length* if there is a chain of submodules $0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_\ell = M$ such that M_{i+1}/M_i is simple for $0 \leq i < \ell$.

Let M be a module of finite length with a chain $0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_\ell = M$ as above.

- (a) Show that M does not contain an infinite chain $V_1 \subsetneq V_2 \subsetneq V_3 \subsetneq \cdots$ of R-submodules, nor does it contain an infinite chain $W_1 \supseteq W_2 \supseteq W_3 \supseteq \cdots$ of R-submodules. Hint: Induct on ℓ , and think about $0 \to M_j \to M \to M/M_j \to 0$.
- Let $\phi: M \to M$ be an *R*-module homormophism.
- (b) Show that, for N sufficiently large, we have $\operatorname{Ker}(\phi^N) = \operatorname{Ker}(\phi^{N+1}) = \operatorname{Ker}(\phi^{N+2}) = \cdots$. Call this common kernel K. Show furthermore that ϕ takes K to K and that the restriction of ϕ to K is nilpotent.
- (c) Show that, for N sufficiently large, we have $\text{Im}(\phi^N) = \text{Im}(\phi^{N+1}) = \text{Im}(\phi^{N+2}) = \cdots$. Call this common image I. Show furthermore that ϕ takes I to I and that the restriction of ϕ to I is invertible.
- (d) Show that $M = K \oplus I$.

¹Jordan-Chevalley decomposition can actually be defined for perfect fields, but "diagonalizable" must be replaced by a more subtle condition called "semi-simple". Here a field k is perfect if either (1) k has characteristic 0 or (2) k has characteristic p and all elements of k have p-th roots.