Problem Set 8 (Due Friday, November 15)

Please see the course website for policy regarding collaboration and formatting your homework.

(60) Consider the nilpotent matrix whose powers are shown below:

$$
X = \begin{bmatrix} -1 & -7 & -2 & -2 \\ 0 & 3 & 1 & 1 \\ 0 & -6 & -2 & -2 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad X^2 = \begin{bmatrix} -1 & -4 & -1 & -1 \\ 1 & 4 & 1 & 1 \\ -2 & -8 & -2 & -2 \\ -1 & -4 & -1 & -1 \end{bmatrix} \quad X^3 = 0
$$

$$
rank(X) = 2 \quad rank(X^2) = 1 \quad rank(X^3) = 0
$$

- (a) Compute the Jordan normal form of *X*. Suppose that *S* is a matrix with columns \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , \vec{v}_4 such that $S^{-1}XS$ is in Jordan normal form, with the larger blocks sorted before the smaller ones. Express the following quantities in terms of \vec{v}_1 , \vec{v}_2 , \vec{v}_3 , \vec{v}_4 :
- (b) $\text{Ker}(X)$ and $\text{Ker}(X^2)$.
- (c) $\text{Im}(X)$ and $\text{Im}(X^2)$.
- (d) The intersections $\text{Im}(X) \cap \text{Ker}(X)$, $\text{Im}(X) \cap \text{Ker}(X^2)$, $\text{Im}(X^2) \cap \text{Ker}(X)$ and $\text{Im}(X^2) \cap \text{Ker}(X^2)$.
- (61) Let *A* be an $n \times n$ complex matrix. Show that *A* is nilpotent if and only if *A* and 2*A* are similar.
- (62) Suppose that *A* is a 7 \times 7 complex matrix that obeys the polynomial relation $A^5 = 2A^4 + A^3$. Given that the rank of *A* is 5 and the trace is 4, what is the Jordan canonical form of *A*?
- (63) We didn't get to this one in class, so please do it now. Let $K \subset L$ be fields and let X be an $n \times n$ matrix with entries in *K*. Show that *X* has the same rational canonical form over *K* and over *L*.
- (64) Let *k* be a field. A square matrix X with entries in *k* is called *diagonalizable* if it is similar to a diagonal matrix. (a) Show that, if a matrix *X* is both diagonalizable and nilpotent, then it is zero.
	- (b) Let *X* and *Y* be square matrices with entries in *k* and let *Z* be the block matrix $\begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$. Show that *Z* is diagonalizable if and only if *X* and *Y* are both diagonalizable.
	- (c) Let *X* and *Y* be diagonalizable square matrices which commute with each other. Show that there is an invertible matrix *S* such that SXS^{-1} and SYS^{-1} are both diagonal. Hint: Start by reducing to the case that *X* is diagonal and remember to use the hypothesis that $XY = YX$.
- (65) Let *k* be an algebraically closed field¹ and let *X* be an $n \times n$ matrix with entries in *k*.
	- (a) Show that *X* can be written in the form $D + N$ where *D* is diagonalizable, *N* is nilpotent, and $DN = ND$.
	- (b) Let λ_i be the eigenvalues of X, choose $B \ge n$ and let $g(x)$ be the polynomial in Problem 53. Show that the *D* you have constructed is *g*(*X*).

The decomposition $X = D + N$ is known as the Jordan-Chevalley decomposition of X. It is unique, and we will likely prove so on a future problem set.

(66) This problem is a sequel to Problem 59. You may use any results from that problem without proof. We recall the key definitions: Let *R* be a ring. A left *R*-module *S* is called *simple* if $S \neq 0$ and *S* has no submodules other than 0 and *S*. A left *R*-module *M* is said to have *finite length* if there is a chain of submodules $0 = M_0 \subset M_1 \subset M_2 \subset$ $\cdots \subset M_{\ell} = M$ such that M_{i+1}/M_i is simple for $0 \leq i \leq \ell$.

Let *M* be a module of finite length with a chain $0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_\ell = M$ as above.

(a) Show that M does not contain an infinite chain $V_1 \subsetneq V_2 \subsetneq V_3 \subsetneq \cdots$ of R-submodules, nor does it contain an infinite chain $W_1 \supsetneq W_2 \supsetneq W_3 \supsetneq \cdots$ of *R*-submodules. Hint: Induct on ℓ , and think about $0 \to M_j \to M \to$ $M/M_i \to 0$.

Let $\phi : M \to M$ be an *R*-module homormophism.

- (b) Show that, for *N* sufficiently large, we have $\text{Ker}(\phi^N) = \text{Ker}(\phi^{N+1}) = \text{Ker}(\phi^{N+2}) = \cdots$. Call this common kernel *K*. Show furthermore that ϕ takes *K* to *K* and that the restriction of ϕ to *K* is nilpotent.
- (c) Show that, for *N* sufficiently large, we have $\text{Im}(\phi^N) = \text{Im}(\phi^{N+1}) = \text{Im}(\phi^{N+2}) = \cdots$. Call this common image *I*. Show furthermore that ϕ takes *I* to *I* and that the restriction of ϕ to *I* is invertible.
- (d) Show that $M = K \oplus I$.

¹Jordan-Chevalley decomposition can actually be defined for perfect fields, but "diagonalizable" must be replaced by a more subtle condition called "semi-simple". Here a field *k* is perfect if either (1) *k* has characteristic 0 or (2) *k* has characteristic *p* and all elements of *k* have *p*-th roots.