UNIQUE FACTORIZATION IN POLYNOMIAL RINGS

Let R be an integral domain and let F be its field of fractions. We know that F[x] is a Euclidean Domain, hence a PID (Problem 71), hence a UFD (Problem 78). Thus, if $p(x) \in R[x]$, then p(x) factors uniquely in F[x]. In general, the situation in R[x] can be much more complex:

- (127) Let $R = \mathbb{R}[t^2, t^3]$ and let F be the fraction field of R. Show that the polynomial $x^2 t^2$ factors in F[x], but is irreducible in R[x].
- (128) Let $R = \mathbb{R}[t^2, t^3]$ and let F be the fraction field of R. Give two different irreducible factorizations of the polynomial $x^6 t^6$ over R[x]. You may find it helpful to know that the factorization of $x^6 t^6$ over F[x] is $(x t)(x + t)(x^2 + tx + t^2)(x^2 tx + t^2)$.

As the rest of this worksheet will show, if R is a UFD, then life is much nicer. For the rest of this worksheet:

We begin with a problem from the homework:

(129) Let $p \in R$ be a prime element. Let a(x) and b(x) be polynomials in R[x]. Show that, if $a(x)b(x) \in pR[x]$, then either $a(x) \in pR[x]$ or $b(x) \in pR[x]$.

We define a polynomial $a_n x^n + \cdots + a_1 x + a_0$ in R[x] to be *primitive* if $GCD(a_n, \cdots, a_1, a_0) = 1$.

- (130) Let a(x)b(x) = c(x) with a(x), b(x) and $c(x) \in R[x]$. Show that, if c(x) is primitive then a(x) and b(x) are primitive.
- (131) (Gauss's Lemma¹) Let a(x)b(x) = c(x) with a(x), b(x) and $c(x) \in R[x]$. Show that, if a(x) and b(x) are primitive, then c(x) is primitive.
- (132) Let a(x)b(x) = c(x) with $a(x) \in R[x]$ primitive, $b(x) \in F[x]$ and $c(x) \in R[x]$. Show that $b(x) \in R[x]$.
- (133) Let $p(x) \in R[x]$. Show that the following are equivalent:
 - (a) p(x) is irreducible in R[x].
 - (b) p(x) is prime in R[x].
 - (c) One of the following two conditions holds:
 - p(x) is a constant polynomial whose value is a prime element p of R.
 - p(x) is primitive in R[x], and is prime in F[x].

Helpful reminder: R and F[x] are UFD's, so prime and irreducible are synonyms in those two rings.

We are now set to prove:

(134) **IMPORTANT RESULT:** Show that, if R is a UFD, then R[x] is a UFD.

In particular, $\mathbb{Z}[x_1, \ldots, x_n]$ and $k[x_1, \ldots, x_n]$ are UFD's for any field k and any number of variables.

¹Carl Friedrich Gauss, German mathematician, 1777-1855, plausible candidate for the greatest mathematician of all time. This is one of three results I know of named "Gauss's Lemma".