PRODUCTS FROM A CATEGORICAL PERSPECTIVE

The product operation is ubiquitous in mathematics, What do these notions of product have in common? Universal properties are a systematic tool for approaching this question.

As is often true of category theory, it is both true that one *can* get a very long way without explicitly addressing these issues, and that everything becomes clearer if you do.

Universal Property of Products in Rings. Suppose R and S are rings. A *categorical product* of R and S is a ring, denoted $R \times S$, together with two ring homomorphisms $\pi_R \colon R \times S \to R$ and $\pi_S \colon R \times S \to S$ such that for every ring T and every pair of ring homomorphisms $f_R \colon T \to R$ and $f_S \colon T \to S$ there is a unique ring homomorphism $f \colon T \to R \times S$ for which the following diagram commutes.

The maps π_R and π_S are usually called projections and f is often denoted as $f_R \times f_S$.

(87) Show that the product ring $R \times S$, with its natural projection maps, is a categorical product in the sense above. For a general category, the universal property of products looks like:

Universal Property of products. Suppose \mathcal{C} is a category. For objects X and Y in \mathcal{C} , a product of X and Y is an object in \mathcal{C} , denoted $X \times Y$, together with a pair of morphisms $\pi_X \colon X \times Y \to X$ and $\pi_Y \colon X \times Y \to Y$ that satisfy the following universal property: for every object Z in \mathcal{C} and pair of morphisms $f_X \colon Z \to X$, $f_Y \colon Z \to Y$ there exists a unique morphism $f \colon Z \to X \times Y$ such that the following diagram commutes:

Warning: products need not exist! However, when they exist, they are unique up to unique isomorphism

- (88) Suppose Q is an object in C that, along with morphisms $\tilde{\pi}_X \colon Q \to X$ and $\tilde{\pi}_Y \colon Q \to Y$, satisfies the universal property of products. Show that there exists a natural isomorphism¹ from Q to $X \times Y$.
- (89) Let R be a ring and let M and N be R-modules. Show that $M \oplus N$ is the product of M and N in the category of R-modules.
- (90) Let R be a ring and let M and N be R-modules. Let $\iota_M : M \to M \oplus N$ and $\iota_N : N \to M \oplus N$ be the maps $m \mapsto (m, 0)$ and $n \mapsto (0, n)$. Show that $M \oplus N$ is also the coproduct of M and N in the category of R-modules, meaning that, given any R-module C and any R-module maps $f_M : M \to C$ and $f_N : N \to C$, there is a unique R-module map $f : M \oplus N \to C$ such that the following diagram commutes:

(91) Is $R \times S$ the coproduct of R and S in the category of rings? What if we allow ring maps to be non-unital?

¹For A, B in C we say $T \in \text{Hom}_{\mathbb{C}}(A, B)$ is an *isomorphism* provided there exists $S \in \text{Hom}_{\mathbb{C}}(B, A)$ for which $S \circ T = \text{Id}_A$ and $T \circ S = \text{Id}_B$.