RINGS

Vocabulary: ring, commutative ring, zero ring, ring homomorphism, units.

Definition. A *ring* is a set *R* with two operations:

- $\bullet +: R \times R \rightarrow R$ (called *addition*) and
	- $* : R \times R \rightarrow R$ (called *multiplication*)

and elements 0_R and 1_R satisfying^{*a*} *b* the following axioms:

- R1: $(R, +, 0_R)$ is an abelian group,
- R2: \ast is associative: $r \ast (s \ast t) = (r \ast s) \ast t$ for all $r, s, t \in R$,

R3: multiplication is both left and right distributive with respect to addition: for all $r, s, t \in R$ we have $r * (s + t) =$ $r * s + r * t$ (called *left-distributivity*) and $(s + t) * r = s * r + t * r$ (called *right-distributivity*), and

R4: $1_R * r = r * 1_R = r$ for all $r \in R$.

^aSome people do not impose that a ring has a multiplicative identity, but in this course all rings will have a multiplicative identity. See Poonen, "Why all rings should have a 1", https://math.mit.edu/~poonen/papers/ring.pdf for an argument.

A ring without an identity is sometimes referred to as a *rng*. A ring without negatives is sometimes called a *rig*.

We will almost always drop the symbol $*$ and write *ab* for $a * b$; similarly, we will write 0 and 1 for 0_R and 1_R . A ring is said to be *commutative* provided that its multiplicative operation is commutative. A *zero ring* is a ring with one element.

- (1) Suppose *R* is a ring. Show $\text{Mat}_{n\times n}(R)$ is a ring with respect to matrix multiplication. When is it commutative?
- (2) Let *G* be a group and *k* a ring. The *group ring* kG is defined to be the set of sums of the form $\sum_{g \in G} a_g g$, where the a_q are in k and all but finitely many a_q are 0, with the "obvious" addition and multiplication. Spell out what the "obvious" definitions are and check that they are a ring.
- (3) Let *A* be an abelian group. Let $R = \text{Hom}_{\text{grp}}(A, A)$, and define operations + and $*$ on R by $(r_1 + r_2)(a) =$ $r_1(a) + r_2(a)$ and $(r_1 * r_2)(a) = r_1(r_2(a))$. Show that *R* is a ring.

This ring is called the *endomorphism* ring of *A* and denoted End(*A*).

- (4) Why did we require that *A* was abelian in the previous problem?
- (5) Suppose *R* is a ring. Show that $0_R * x = x * 0_R = 0_R$ for all $x \in R$.
- (6) Suppose that *R* is a ring with $0_R = 1_R$. Show that *R* is the zero ring.

Definition. Suppose that *R* is a ring. An element $u \in R$ is called a *unit* if there is an element u^{-1} with $u * u^{-1} =$ $u^{-1} * u = 1_R$. The set of units of *R* is denoted R^{\times} .

(7) Show that R^{\times} is a group with respect to $*$.

(8) Give an example of a ring R with elements *u* and *v* such that $u * v = 1_R$ but $v * u \neq 1_R$.

Definition. Suppose $(R, +_R, *_R, 1_R)$ and $(S, +_S, *_S, 1_S)$ are two rings. A function $f: R \to S$ is called a *ring homomorphism* provided*a* that

- $f(a + R b) = f(a) + S f(b)$ for all $a, b \in R$,
- $f(a *_{R} b) = f(a) *_{S} f(b)$ for all $a, b \in R$, and

$$
\bullet \ f(1_R) = 1_S
$$

The set of ring homomorphisms from *R* to *S* is denoted $Hom(R, S)$ or $Hom_{ring}(R, S)$.

^{*a*}Some people do not impose that $f(1_R) = 1_S$. These people call *f unital* when $f(1_R) = 1_S$. In this course, we define homorphisms to be unital, and say "non-unital homomorphism" on the rare occasions that we need this concept.

- (9) Let $R = \mathbb{Z}/15\mathbb{Z}$ and let $S = \mathbb{Z}/3Z$. What is $\text{Hom}_{\text{ring}}(R, S)$? What about $\text{Hom}_{\text{ring}}(S, R)$? What if we allow non-unital homomorphisms?
- (10) We defined a group ring above. For those who know what a monoid and/or a category are: Can you define a *monoid ring*? What about a *category ring*?