RINGS Vocabulary: ring, commutative ring, zero ring, ring homomorphism, units. **Definition**. A *ring* is a set R with two operations: - $+: R \times R \to R$ (called *addition*) and - $*: R \times R \to R$ (called *multiplication*) and elements 0_R and 1_R satisfying a the following axioms: R1: $(R, +, 0_R)$ is an abelian group, R2: * is associative: r * (s * t) = (r * s) * t for all $r, s, t \in R$, R3: multiplication is both left and right distributive with respect to addition: for all $r, s, t \in R$ we have r * (s + t) = r * s + r * t (called *left-distributivity*) and (s + t) * r = s * r + t * r (called *right-distributivity*), and R4: $1_R * r = r * 1_R = r$ for all $r \in R$. We will almost always drop the symbol * and write ab for a*b; similarly, we will write 0 and 1 for 0_R and 1_R . A ring is said to be **commutative** provided that its multiplicative operation is commutative. A **zero ring** is a ring with one element. - (1) Suppose R is a ring. Show $Mat_{n\times n}(R)$ is a ring with respect to matrix multiplication. When is it commutative? - (2) Let G be a group and k a ring. The **group ring** kG is defined to be the set of sums of the form $\sum_{g \in G} a_g g$, where the a_g are in k and all but finitely many a_g are 0, with the "obvious" addition and multiplication. Spell out what the "obvious" definitions are and check that they are a ring. - (3) Let A be an abelian group. Let $R = \text{Hom}_{grp}(A, A)$, and define operations + and * on R by $(r_1 + r_2)(a) = r_1(a) + r_2(a)$ and $(r_1 * r_2)(a) = r_1(r_2(a))$. Show that R is a ring. This ring is called the *endomorphism* ring of A and denoted End(A). - (4) Why did we require that A was abelian in the previous problem? - (5) Suppose R is a ring. Show that $0_R * x = x * 0_R = 0_R$ for all $x \in R$. - (6) Suppose that R is a ring with $0_R = 1_R$. Show that R is the zero ring. **Definition.** Suppose that R is a ring. An element $u \in R$ is called a **unit** if there is an element u^{-1} with $u * u^{-1} = u^{-1} * u = 1_R$. The set of units of R is denoted R^{\times} . - (7) Show that R^{\times} is a group with respect to *. - (8) Give an example of a ring R with elements u and v such that $u * v = 1_R$ but $v * u \neq 1_R$. **Definition**. Suppose $(R, +_R, *_R, 1_R)$ and $(S, +_S, *_S, 1_S)$ are two rings. A function $f: R \to S$ is called a *ring homomorphism* provided^a that - $f(a +_R b) = f(a) +_S f(b)$ for all $a, b \in R$, - $f(a *_R b) = f(a) *_S f(b)$ for all $a, b \in R$, and - $f(1_R) = 1_S$ The set of ring homomorphisms from R to S is denoted Hom(R, S) or $Hom_{ring}(R, S)$. - (9) Let $R = \mathbb{Z}/15\mathbb{Z}$ and let $S = \mathbb{Z}/3Z$. What is $\operatorname{Hom_{ring}}(R, S)$? What about $\operatorname{Hom_{ring}}(S, R)$? What if we allow non-unital homomorphisms? - (10) We defined a group ring above. For those who know what a monoid and/or a category are: Can you define a *monoid ring*? What about a *category ring*? ^aSome people do not impose that a ring has a multiplicative identity, but in this course all rings will have a multiplicative identity. See Poonen, "Why all rings should have a 1", https://math.mit.edu/~poonen/papers/ring.pdf for an argument. ^bA ring without an identity is sometimes referred to as a *rng*. A ring without negatives is sometimes called a *rig*. ^aSome people do not impose that $f(1_R) = 1_S$. These people call f unital when $f(1_R) = 1_S$. In this course, we define homorphisms to be unital, and say "non-unital homomorphism" on the rare occasions that we need this concept.