INTRODUCTION TO SMITH NORMAL FORM

The Smith^{$\frac{1}{n}$} normal form theorem says the following:

Theorem (Smith normal form). Let *R* be a principal ideal domain and let *X* be an $m \times n$ matrix with entries in *R*. Then there invertible $m \times m$ and $n \times n$ matrices *U* and *V*, and elements $d_1, d_2, \ldots, d_{\min(m,n)}$ of *R*, such that

$$
X = UDV,
$$

where D is the $m \times n$ matrix with $D_{ij} = d_i$ and $D_{ij} = 0$ for $i \neq j$. Moreover, we may assume $d_1 | d_2 | \cdots | d_{\min(m,n)}$ and, with this normalization, the d_i are unique up to multiplication by units.

The d_i are called the *invariant factors* of X . We first set up some notation:

(92) Let *R* be any ring. Define an relation \sim on $\text{Mat}_{m \times n}(R)$ by $X \sim Y$ if there are invertible $m \times m$ and $n \times n$ matrices *U* and *V* with $Y = U X V$. Show that \sim is an equivalence relation.

(93) Here is a more abstract perspective on \sim : Let *X* and *Y* \in Mat_{*m*×*n*}(*R*).

(a) Show that $X \sim Y$ if and only if we can choose vertical isomorphisms making the following diagram commute:

$$
R^n \xrightarrow{X} R^m
$$

$$
\underset{R^n \xrightarrow{Y} R^m}{\geq} R^m
$$

(b) Show that, if $X \sim Y$, then the kernels, cokernels and images of X and Y are isomorphic *R*-modules.^[3]

For nonnegative integers *m* and *n* and elements $d_1, d_2, \ldots, d_{\min(m,n)}$ of *R*, we define $\text{diag}_{mn}(d_1, d_2, \ldots, d_{\min(m,n)})$ to be the $m \times n$ matrix *D* above. Thus, Smith normal form says that every matrix is \sim -equivalent to a matrix of the form $diag_{mn}(d_1, d_2, \ldots, d_{\min(m,n)})$ with $d_1|d_2|\cdots|d_{\min(m,n)}$ and the d_j are unique up to multiplication by units.

It will be convenient today to know the following formula. The morally right proof of this result will be more natural in a month^q, so you may assume it for now.

The Cauchy-Binet formula. Let *R* be a commutative ring. Given an $m \times n$ matrix X with entries in *R*, and subsets $I \subseteq \{1, 2, \ldots, m\}$ and $J \subseteq \{1, 2, \ldots, n\}$ of the same size, define $\Delta_{IJ}(X)$ to be the determinant of the square submatrix of X using rows I and columns J. Let X and Y be $a \times b$ and $b \times c$ matrices with entries in R and let I and K be subsets of $\{1, 2, ..., a\}$ and $\{1, 2, ..., c\}$ with $|I| = |J| = q$. Then

$$
\Delta_{IK}(XY) = \sum_{J \subseteq \{1,2,\ldots,b\}, |J|=q} \Delta_{IJ}(X) \Delta_{JK}(Y).
$$

The next few problems show how to compute invariant factors.

- (94) Let *R* be a UFD. Let *U*, *X* and *V* be $m \times m$, $m \times n$ and $n \times n$ matrices with entries in *R*. Show that the GCD of the $q \times q$ minors of X divides the GCD of the $q \times q$ minors of UXV .
- (95) Let *R* be a UFD. Show that, if $X \sim Y$, then the GCD of the $q \times q$ minors of X is equal to the GCD of the $q \times q$ minors of *Y* .
- (96) Let *R* be a UFD. Let *X* be an $m \times n$ matrix with entries in *R*. Show that, if $X \sim diag_{mn}(d_1, d_2, \ldots, d_{\min(m,n)})$ with $d_1|d_2|\cdots|d_{\min(m,n)}$, then $d_1d_2\cdots d_q$ is the GCD of the $q\times q$ minors of *X*. Deduce that invariant factors are uniquely defined up to multiplication by units.
- (97) Assuming the Smith normal form theorem for \mathbb{Z} , compute the invariant factors of the following matrices:

(98) If you have gotten this far, go ahead and prove the Cauchy-Binet formula. It can be done by brute force.

¹Named for Henry John Stephen Smith, an Irish mathematician who lived from 1826 to 1883.

²The factorization *UDV* may remind the reader of singular value decomposition. This is not a coincidence; Smith normal form can be thought of as a non-Archimedean version of singular value decomposition.

³The converse does not hold, see https://mathoverflow.net/questions/343143.

⁴The proof appeared as problem $\vert 182 \vert$. This worksheet was done on October 16 and that one was on November 25, so one month was a slight underestimate.