PROOF OF THE SMITH NORMAL FORM THEOREM Most people find the proof of the Smith normal form theorem for Euclidean domains more intuitive than the case of a general PID. When I went to write them out, they actually came out very similar. - (99) **Proof of Smith normal form for Euclidean integral domains** Let R be a Euclidean integral domain with positive norm $N(\cdot)$. Let $X \in \operatorname{Mat}_{m \times n}(R)$. If X = 0, the Smith normal form theorem clearly holds for X, so assume otherwise. Let d be an element of smallest norm among all nonzero elements occurring as an entry in a matrix Y with $Y \sim X$. Let Y be a matrix with $Y \sim X$ and $Y_{11} = d$. - (a) Show that d divides Y_{i1} and Y_{1j} for all $2 \le i \le m$ and $2 \le j \le n$. - (b) Show that there is a matrix $Z \sim Y$ with $Z_{11} = d$ and $Z_{i1} = Z_{1j} = 0$ for all $2 \le i \le m$ and $2 \le j \le n$. - (c) Show that d divides Z_{ij} for all $2 \le i \le m$ and $2 \le j \le n$. (Hint: If not, find $W \sim Z$ with $W_{11} = d$ and $W_{1j} = Z_{ij}$.) - (d) Show that X is \sim -equivalent to a matrix of the form $\operatorname{diag}_{mn}(d_1, d_2, \dots, d_{\min(m,n)})$ with $d_1|d_2|\cdots|d_{\min(m,n)}$. - (100) Consequence of the proof of Smith normal form for Euclidean integral domains: Define a stronger equivalence relation \sim_E where $X \sim_E Y$ if Y = UXV where U and V products of elementary matrices. - (a) Trace through your proof and check that you have shown, in a Euclidean integral domain, that every matrix is \sim_E -equivalent to a matrix of the form $\operatorname{diag}_{mn}(d_1, d_2, \dots, d_{\min(m,n)})$ with $d_1|d_2|\dots|d_{\min(m,n)}$. - (b) Let R be a Euclidean integral domain. Let $SL_n(R)$ be the group of $n \times n$ matrices with entries in R and determinant 1. Show that $SL_n(R)$ is generated by elementary matrices. To do the case of a general PID, you'll need the following old problems: (81) Let x and $y \in R$ Show that there is a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with entries in R such that ad - bc = 1 and $$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} GCD(x, y) \\ 0 \end{bmatrix}.$$ (82) Let x and y be nonzero elements of R. Show that there are invertible 2×2 matrices U and V with $$U\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} V = \begin{bmatrix} GCD(x, y) & 0 \\ 0 & LCM(x, y) \end{bmatrix}.$$ Here $LCM(x, y) := \frac{xy}{GCD(x,y)}$. - (101) Let R be a Noetherian ring (such as a PID) and let \mathcal{D} be a nonempty subset of R. Show that there is an element $d \in \mathcal{D}$ which is "minimal with respect to division": More precisely, show that there is an element such that if $d' \in \mathcal{D}$ divides d, then d divides d' as well. - (102) **Proof of Smith normal form for PID's** Let R be a PID. Let $X \in \operatorname{Mat}_{m \times n}(R)$. Let \mathcal{D} be the set of all entries occurring in any matrix Y with $Y \sim X$. Let d be as in Problem 101 for \mathcal{D} and let Y be a matrix with $Y \sim X$ and $Y_{11} = d$. - (a) Show that d divides Y_{i1} and Y_{1j} for all $2 \le i \le m$ and $2 \le j \le n$. - (b) Show that there is a matrix $Z \sim Y$ with $Z_{11} = d$ and $Z_{i1} = Z_{1j} = 0$ for all $2 \le i \le m$ and $2 \le j \le n$. - (c) Show that d divides Z_{ij} for all $2 \le i \le m$ and $2 \le j \le n$. - (d) Show that X is \sim -equivalent to a matrix of the form $\operatorname{diag}_{mn}(d_1, d_2, \dots, d_{\min(m,n)})$ with $d_1|d_2| \cdots |d_{\min(m,n)}$.