Symmetric bilinear forms over ${\mathbb R}$

Let B be a symmetric bilinear form on a vector space W over \mathbb{R} . We say that B is

- **Positive definite** if B(w, w) > 0 for all nonzero $w \in W$.
- **Positive semidefinite** if $B(w, w) \ge 0$ for all $w \in W$.
- Negative definite if B(w, w) < 0 for all nonzero $w \in W$.
- Negative semidefinite if $B(w, w) \leq 0$ for all $w \in W$.

Recall that we showed in Problem 195 that a symmetric bilinear form over \mathbb{R} can always be represented by a diagonal matrix whose entries lie in $\{-1, 0, 1\}$.

(196) Let B be a symmetric bilinear form which can be represented by the diagonal matrix

diag
$$(\underbrace{1, 1, \dots, 1}^{n_+}, \underbrace{0, 0, \dots, 0}^{n_0}, \underbrace{-1, -1, \dots, -1}^{n_-}).$$

- (a) Show that n_+ is the dimension of the largest subspace L of V such that B restricted to L is positive definite.
- (b) Show that $n_+ + n_0$ is the dimension of the largest subspace L of V such that B restricted to L is positive semidefinite.
- (c) Show that n_{-} is the dimension of the largest subspace L of V such that B restricted to L is negative definite.
- (d) Show that $n_{-} + n_0$ is the dimension of the largest subspace L of V such that B restricted to L is negative semidefinite.
- (197) Let B be a symmetric bilinear form. Suppose that B can be represented (in two different bases) by the diagonal matrices

$$\operatorname{diag}(\overbrace{1,1,\ldots,1}^{m_{+}},\overbrace{0,0,\ldots,0}^{m_{0}},\overbrace{-1,-1,\ldots,-1}^{m_{-}}) \text{ and } \operatorname{diag}(\overbrace{1,1,\ldots,1}^{n_{+}},\overbrace{0,0,\ldots,0}^{n_{0}},\overbrace{-1,-1,\ldots,-1}^{n_{-}})$$

Show that $(m_+, m_0, m_-) = (n_+, n_0, n_-)$.

The word *signature* is used to refer to something like the triple (n_+, n_0, n_-) . Unfortunately, sources disagree as to exactly what the signature is. Various sources will say that the signature is (n_+, n_0, n_-) , (n_+, n_-, n_0) , (n_+, n_-) or $n_+ - n_-$. In this course, we'll adopt the convention that the signature is (n_+, n_0, n_-) .

- If G is a symmetric real matrix, we will use the term *signature of* G to refer to the signature of the bilinear form $B(x,y) = x^T G y$.
- (198) Let G be a real symmetric $n \times n$ matrix with signature (n_+, n_0, n_-) . If $n_0 > 0$, show that det G = 0. If $n_0 = 0$, show that det G is nonzero with sign $(-1)^{n_-}$.
- (199) Let G be a real symmetric $n \times n$ matrix with signature (n_+, n_0, n_-) . Let G' be the upper left symmetric $(n 1) \times (n 1)$ submatrix of G. Show that the signature of G' is one of $(n_+ 1, n_0 + 1, n_- 1)$, $(n_+ 1, n_0, n_-)$, $(n_+, n_0, n_- 1)$, $(n_+, n_0 1, n_-)$. Hint: Use Problem [196].
- (200) Let G be a real symmetric matrix and let G_k be the $k \times k$ upper left submatrix of G. Assume that det $G_k \neq 0$ for $1 \leq k \neq n$. Show that the signature of G is (n q, 0, q) where q is the number of k for which det G_{k-1} and det G_k have opposite signs. Here we formally define det $G_0 = 1$.
- (201) (Sylvester's criterion) Let G be a real symmetric matrix and define G_k as above. Show that G is positive definite if and only if all the det G_k are > 0. (In other words, we no longer have to take det $G_k \neq 0$ as an assumption.)

(202) Describe the signature of
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -x \\ 0 & -x & 2 \end{bmatrix}$$
 as a function of $x \in \mathbb{R}$.

¹Named for James Sylvester, nineteenth century British/American mathematician. He founded the *American Journal of Mathematics* and established much of the notation for modern linear algebra.