TENSOR ALGEBRAS, SYMMETRIC AND EXTERIOR ALGEBRAS

For this worksheet, we move back to the world of vector spaces. It is possible to study these concepts over a general
commutative ring, but this seems like enough for now.
Let v be a field and let V' be a vector space over k. By problem there is a natural isomorphism (V @ V) @ V =
V @ (V ® V) and similarly for higher tensor powers. We therefore write V' ®" for the n-fold tensor product of V' with itself
and write elements of V™ as " ¢, jy-j, Vj; @ V5, @ - - - @ v;, without parentheses. We define V0 to be k.
We define the tensor algebra T(V') to be B, V=
(169) Show that 7(V') has a unique ring structure where the product of o € V¥ and 7 € V®iso @ 7 € Vet
(170) Let « : V. — W be a linear map. Show that there is a unique map of rings T'(«) : T(V) — T(W) with
T(a)(v) = a(v) forv e V.
We define the symmetric algebra Sym® (V) to be the quotient of 7'(V') by the 2-sided ideal generated by all tensors of
the formv @ w — w ® v.
(171) Show that Sym*® (V') is a commutative ring.
(172) Show that Sym® (V') breaks up as a direct sum @32, Sym?(V') where Sym? (V) is a quotient of V®4.
(173) Let x1, x2, ..., T, be a basis of V. Show that {z;, z;, - - - x; 1 <ip <ig < -+ <ig < mn}isabasis of
Sym<(V'). Show that Sym® (V') 2 k[z1, . .., ).
We define the exterior algebra, A*(V) to be the quotient of T'(V) by the two sided ideal generated by v ® v for all
v € V. The multiplication in A®(V) is generally denoted A.
(174) Show that, forvand w € V, wehave v A w = —w A v.
(175) Show that A\°®(V') breaks up as a direct sum @7, A4 (V) where A%(V') is a quotient of V®4.
(176) Let ey, ea, ..., e, be a basis of V. Show that {e;; Aej, A---Aej, + 1 <iy3 <ig <---<ig<n}isabasis of
A'(V).

(177) Let vy, va, ..., vg € V. Show that vy A vy A --- A vg = 0if and only if vy, vs, ..., vg are linearly dependent.
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We now consider the effect of these constructions on linear maps. Let V' and W be k-vector spacesand o : V' — W a
linear map.

(178) Show that there are unique ring maps Sym®(«) : Sym®(V) — Sym®(W) and A°*(«) : A*(V) — A*(W) with
Sym®(a)(v) = a(v) and A*()(v) = a(v) forv € V.
(179) Let o : k3 — k3 be given by the matrix [é g 12}} Compute the matrix of A%(a) : A2(k3) — A2 (k).
(180) Let o : k2 — k2 be given by the matrix [? ¢]. Compute the matrix of Sym?(«) : Sym?(k?) — Sym?(k?).
(181) Show that A%(a o0 8) = A%(a) o A%(B) and Sym®(av o 8) = Sym®(a) o Sym?(B).
Given an m x n matrix X with entries in k, and subsets / C {1,2,...,m} and J C {1,2,...,n} of the same size,
define A7 ;(X) to be the determinant of the square submatrix of X using rows / and columns .J.
(182) Prove the Cauchy-Binet formula: Let X and Y be a x b and b x ¢ matrices with entries in k and let I and K be
subsets of {1,2,...,a}and {1,2,...,c} with |I| = |J| = q. Then
Arg(XY) = > Arp(X)Asx(Y).
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