
TENSOR ALGEBRAS, SYMMETRIC AND EXTERIOR ALGEBRAS

For this worksheet, we move back to the world of vector spaces. It is possible to study these concepts over a general
commutative ring, but this seems like enough for now.

Let v be a field and let V be a vector space over k. By problem 157, there is a natural isomorphism (V ⌦ V ) ⌦ V ⇠=
V ⌦ (V ⌦V ) and similarly for higher tensor powers. We therefore write V ⌦n for the n-fold tensor product of V with itself
and write elements of V ⌦n as

P
cj1j2···jn vj1 ⌦ vj2 ⌦ · · ·⌦ vjn without parentheses. We define V

⌦0 to be k.
We define the tensor algebra T (V ) to be

L
d V

⌦d.
(169) Show that T (V ) has a unique ring structure where the product of � 2 V

⌦s and ⌧ 2 V
⌦t is � ⌦ ⌧ 2 V

⌦(s+t).
(170) Let ↵ : V ! W be a linear map. Show that there is a unique map of rings T (↵) : T (V ) ! T (W ) with

T (↵)(v) = ↵(v) for v 2 V .
We define the symmetric algebra Sym

•
(V ) to be the quotient of T (V ) by the 2-sided ideal generated by all tensors of

the form v ⌦ w � w ⌦ v.
(171) Show that Sym•

(V ) is a commutative ring.
(172) Show that Sym•

(V ) breaks up as a direct sum
L1

d=0 Sym
d
(V ) where Sym

d
(V ) is a quotient of V ⌦d.

(173) Let x1, x2, . . . , xn be a basis of V . Show that {xi1xi2 · · ·xid : 1  i1  i2  · · ·  id  n} is a basis of
Sym

d
(V ). Show that Sym•

(V ) ⇠= k[x1, . . . , xn].
We define the exterior algebra,

V•
(V ) to be the quotient of T (V ) by the two sided ideal generated by v ⌦ v for all

v 2 V . The multiplication in
V•

(V ) is generally denoted ^.
(174) Show that, for v and w 2 V , we have v ^ w = �w ^ v.
(175) Show that

V•
(V ) breaks up as a direct sum

L1
d=0

Vd
(V ) where

Vd
(V ) is a quotient of V ⌦d.

(176) Let e1, e2, . . . , en be a basis of V . Show that {ei1 ^ ei2 ^ · · · ^ eid : 1  i1 < i2 < · · · < id  n} is a basis ofVd
(V ).

(177) Let v1, v2, . . . , vd 2 V . Show that v1 ^ v2 ^ · · · ^ vd = 0 if and only if v1, v2, . . . , vd are linearly dependent.
We now consider the effect of these constructions on linear maps. Let V and W be k-vector spaces and ↵ : V ! W a

linear map.
(178) Show that there are unique ring maps Sym•

(↵) : Sym
•
(V ) ! Sym

•
(W ) and

V•
(↵) :

V•
(V ) !

V•
(W ) with

Sym
•
(↵)(v) = ↵(v) and

V•
(↵)(v) = ↵(v) for v 2 V .

(179) Let ↵ : k
3 ! k

3 be given by the matrix
h
r s t
u v w
x y z

i
. Compute the matrix of

V2
(↵) :

V2
(k

3
) !

V2
(k

3
).

(180) Let ↵ : k
2 ! k

2 be given by the matrix [
p q
r s ]. Compute the matrix of Sym2

(↵) : Sym
2
(k

2
) ! Sym

2
(k

2
).

(181) Show that
Vd

(↵ � �) =
Vd

(↵) �
Vd

(�) and Sym
d
(↵ � �) = Sym

d
(↵) � Symd

(�).
Given an m ⇥ n matrix X with entries in k, and subsets I ✓ {1, 2, . . . ,m} and J ✓ {1, 2, . . . , n} of the same size,

define �IJ(X) to be the determinant of the square submatrix of X using rows I and columns J .
(182) Prove the Cauchy-Binet formula: Let X and Y be a ⇥ b and b ⇥ c matrices with entries in k and let I and K be

subsets of {1, 2, . . . , a} and {1, 2, . . . , c} with |I| = |J | = q. Then

�IK(XY ) =

X

J ✓ {1, 2, . . . , b}
|J | = q

�IJ(X)�JK(Y ).


