SYMMETRIC BILINEAR FORMS

Let *k* be a field, let *V* be a finite dimensional vector space over *k* and let $B: V \times V \to k$ be a *k*-bilinear pairing. Recall that, given a basis $v_1, v_2, ..., v_n$ of V, we encode B in a Gram matrix G with $G_{ij} = B(v_i, v_j)$, and that B is symmetric if and only if *G* is. Changing bases of *V* modifies the Gram matrix by $G \mapsto SGS^{\tilde{T}}$ for invertible *S*. It is natural to ask how nice we can make the matrix *G* by action of this kind.

To simplify our results, assume that *k* does not have characteristic 2.

- (190) Suppose that *B* is a symmetric bilinear form. Show that there is a basis of *V* for which the Gram matrix of *B* is diagonal. (Hint: If $B \neq 0$, use Problem [185](#page--1-0) to find a vector *v* with $B(v, v) \neq 0$, then consider the decomposition $V = kv \oplus (kv)^{\perp}$.)
- (191) Let *G* be a symmetric matrix with entries in *k*. Show that there is an invertible matrix *S* and a diagonal matrix *D* such that $G = SDS^T$.
- (192) Let $k = 0$. Carry out the procedure in the previous problems for

(a)
$$
G = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
$$
.
\n(b) $G = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$.

This immediately raises the question, given two diagonal matrices diag($\alpha_1, \alpha_2, \ldots, \alpha_n$) and diag($\beta_1, \beta_2, \ldots, \beta_n$), when are the bilinear forms \vec{x}^T diag($\alpha_1, \alpha_2, \ldots, \alpha_n$) \vec{y} and \vec{x}^T diag($\beta_1, \beta_2, \ldots, \beta_n$) \vec{y} equivalent up to a change of basis? For a general field, this is a very hard question. However, we can say some things.

- (193) Suppose that there are nonzero scalars γ_i in *k* with $\alpha_i = \gamma_i^2 \beta_i$. Show that the \vec{x}^T diag($\alpha_1, \alpha_2, \ldots, \alpha_n$) \vec{y} and \vec{x}^T diag($\beta_1, \beta_2, \ldots, \beta_n$) \vec{y} are equivalent.
- (194) Show that the bilinear forms $B([x_1]$, $[y_1]$ = $x_1x_2 + y_1y_2$ and $C([x_1]$, $[y_1]$ = $5x_1x_2 + 5y_1y_2$ are related by a change of basis in \mathbb{Q}^2 , even though 5 is not square in \mathbb{Q} .
- (195) Let $k = \mathbb{R}$. Show that any bilinear form over \mathbb{R} can be represented by a diagonal matrix whose entries lie in *{*1*,* 0*,* 1*}*.