TENSOR PRODUCTS OF MODULES

Let *R* be a ring, let *M* be a right *R*-module and *N* a left *R*-module. We define the abelian group $M \otimes N$ to be generated by symbols $m \otimes n$, for $m \in M$ and $n \in N$, modulo the relations:

 $m \otimes (n_1 + n_2) = m \otimes n_1 + m \otimes n_2$, $(m_1 + m_2) \otimes n = m_1 \otimes n + m_2 \otimes n$, $(mr) \otimes n = m \otimes (rn)$.

We write $M \otimes_R N$ if the ring R is not clear from context.

- (145) Prove the *universal property of tensor products*: For any abelian group A, and any R-bilinear pairing \langle , \rangle : $M \times N \to A$, there is a unique additive map $\lambda : M \otimes N \to A$ such that $\langle m, n \rangle = \lambda(m \otimes n)$. (In the noncommutative setting, *R*-bilinear just means $\langle mr, n \rangle = \langle m, rn \rangle$.)
- (146) Let M_1 and M_2 be right *R*-modules, N_1 and N_2 be left *R*-modules and $\alpha : M_1 \to M_2$ and $\beta : N_1 \to N_2$ be *R*-linear maps. Show that there is a unique additive map $\alpha \otimes \beta$: $M_1 \otimes N_1 \to M_2 \otimes N_2$ such that $(\alpha \otimes \beta)(m \otimes n) =$ $\alpha(m) \otimes \beta(n)$.
- (147) Let M_1, M_2, M_3 be right *R*-modules, let N_1, N_2 and N_3 be left *R*-modules, and let $\alpha_1 : M_1 \to M_2, \alpha_2 : M_2 \to$ $M_3, \beta_1 : N_1 \to N_2$ and $\beta_2 : N_2 \to N_3$ be *R*-linear maps. Show that $(\alpha_2 \otimes \beta_2) \circ (\alpha_1 \otimes \beta_1) = (\alpha_2 \circ \alpha_1) \otimes (\beta_2 \otimes \beta_1)$.

Tensor products over noncommutative rings are important, but we will mostly focus on the commutative case.

From now on, let *R* be a commutative ring.

- (148) Let *M* and *N* be *R*-modules. Show that there is a unique *R*-module structure on $M \otimes N$ such that $r(m \otimes n) =$ $(rm) \otimes n = m \otimes (rn).$
- (149) Let M, N and A be R-modules and let $M \otimes N \to A$ be an R-bilinear pairing (which now means that $\langle rm, n \rangle =$ $\langle m, rn \rangle = r\langle m, n \rangle$. Show that the unique map $\lambda : M \otimes N \to A$ coming from the universal property of tensor products is *R*-linear.
- (150) Suppose that *I* is a subset of *M* which generates *M* as an *R*-module, and *J* is a subset of *N* which generates *N* as an *R*-module. Show that the elements $m \otimes n$, $m \in I$ and $n \in J$, generate $M \otimes N$ as an *R*-module.
- (151) Show that $(M_1 \oplus M_2) \otimes_R N \cong M_1 \otimes_R N \oplus M_2 \otimes_R N$ and $M \otimes_R (N_1 \oplus N_2) \cong M \otimes_R N_1 \oplus M \otimes_R N_2$.
- (152) Show that $R \otimes_R M \cong M$ and $M \otimes_R R \cong M$.
- (153) Show that $R^{\oplus m} \otimes R^{\oplus n} \cong R^{\oplus mn}$.

So far we have emphasized the similarities between tensor products of vector spaces and of modules, but there are important differences.

- (154) It is **not** true that, if $M_1 \to M_2$ is injective then $M_1 \otimes N \to M_2 \otimes N$ is injective. Give a counterexample. One of the easiest takes $R = \mathbb{Z}$ and $N = \mathbb{Z}/2\mathbb{Z}$.
- (155) It is not true that, if $m \in M$ and $n \in N$ are nonzero, then $m \otimes n$ is nonzero in $M \otimes N$. Give a counterexample. One of the easiest takes $R = \mathbb{Z}$.