MORE TENSOR PRODUCT PROBLEMS

We recall: Let *R* be a ring, let *M* be a right *R*-module and *N* a left *R*-module. We define the abelian group $M \otimes N$ to be generated by symbols $m \otimes n$, for $m \in M$ and $n \in N$, modulo the relations:

 $m \otimes (n_1 + n_2) = m \otimes n_1 + m \otimes n_2$, $(m_1 + m_2) \otimes n = m_1 \otimes n + m_2 \otimes n$, $(mr) \otimes n = m \otimes (rn)$.

We write $M \otimes_R N$ if the ring R is not clear from context. If the ring R is commutative, then $M \otimes_R N$ is an R-module, with $r(m \otimes n) = (rm) \otimes n = m \otimes (rn)$.

Today's problems are a list of things I think you should know; it is less cohesive than usual.

(156) Let *R* be a commutative ring and let *A* and *B* be *R*-modules. Show that

$$
A\otimes_R B\cong B\otimes_R A.
$$

(157) Let *R* be a commutative ring and let *A*, *B* and *C* be *R*-modules. Show that

$$
(A\otimes_R B)\otimes_R C\cong A\otimes_R (B\otimes_R C).
$$

- (158) Let *R* be a commutative ring and let *I* and *J* be ideals of *R*. The goal of this problem is to show that $R/I \otimes_R R/J \cong$ $R/(I + J)$ as an *R*-module.
	- (a) Show that the *R*-module $R/I \otimes_R R/J$ is generated as an *R*-module by $1 \otimes 1$. In other words, show that the map $r \mapsto r(1 \otimes 1)$ from R to $R/I \otimes_R R/J$ is surjective.
	- (b) Show that the kernel of the map in the previous part is $I + J$.
- (159) To check that you understood Problem (158) , describe the Z-module $(\mathbb{Z}/6\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/10\mathbb{Z})$ in as simple terms as possible.

Let *R* and *S* be two rings. An (R, S) -bimodule is a set *M* with maps $+_M : M \times M \to M$, $\times_R : R \times M \to M$ and $\times_S: M \times S \to M$ such that $(+_M, \times_R)$ makes M into a left R-module, $(+_M, \times_S)$ makes M into a right *S*-module and, for $r \in R$, $m \in M$ and $s \in S$, we have $(r \times_R m) \times_S s = r \times_R (m \times_S s)$. This is the answer to "how do you put a module structure on a tensor product over a non-commutative ring?"

(160) Let *R*, *S* and *T* be rings. Let *M* be an (R, S) -bimodule and let *N* be an (S, T) -bimodule. Show that $M \otimes_S N$ has a unique (R, T) -bimodule structure for which $r \times_R (m \otimes n) = (r \times_R m) \otimes n$ and $(m \otimes n) \times_T t = m \otimes (n \times_T t)$ for $r \in R$, $m \in M$, $n \in N$ and $t \in T$.

For the next problem, we move back to the land of vector spaces:

- (161) Let *V* and *W* be *k*-vector spaces, and let V^{\vee} be the dual vector spaces.
	- (a) Construct a "natural" linear map $\alpha : V^{\vee} \otimes_k W \to \text{Hom}_k(V, W)$.
	- (b) Show that the image of this map is the set of ϕ in $\text{Hom}_k(V, W)$ for which $\dim \phi(V) < \infty$.
	- (c) Show that, if *V* or *W* is finite dimensional, then α is surjective.
	- (d) Show that, if *V* and *W* are finite dimensional, then α is an isomorphism.

The aim of the next several parts is to show that α is always injective (and thus, in particular, α is an isomorphism if either *V* or *W* is finite dimensional).

- (e) Let $\lambda_1, \lambda_2, \ldots, \lambda_m$ be linearly independent elements of V^{\vee} . Show that, for each index *j*, there is a vector $v \in V$ with $\lambda_i(v) = 1$ and $\lambda_i(v) = 0$ for $i \neq j$.
- (f) Suppose, for the sake of contradiction, that $\alpha(\sum \lambda_j \otimes w_j) = 0$. Show that $\sum \lambda_j \otimes w_j = 0$. Hint: First reduce to the case that the λ_j are linearly independent.