TENSOR PRODUCTS OF RINGS

Throughout this worksheet, let k be a commutative ring.

Recall that an associative unital k-algebra is a ring R equipped with a map of rings from k to the center of R. Note that, in particular, a k-algebra is a k-module.

Convention for this worksheet: I will shorten "associative unital k-algebra" to "k-algebra".

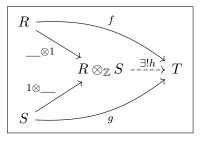
- (162) Let R and S be k-algebras. Show that $R \otimes_k S$ has a unique structure of k-algebra such that $(r_1 \otimes s_1)(r_2 \otimes s_2) = (r_1r_2) \otimes (s_1s_2)$.
- (163) Show that $k[x] \otimes_k k[y] \cong k[x, y]$.
- (164) Let G and H be groups and let kG and kH be the corresponding group rings. Show that $kG \otimes_k kH \cong k(G \times H)$.
- (165) Let R be a commutative ring and let I and J be ideals of R. Show that $(R/I) \otimes_R (R/J) \cong R/(I+J)$ as rings. You already proved this isomorphism as R-modules back in Problem (158).
- (166) Let $A = k[x_1, x_2]/(x_1^2 + x_2^2 + 1)$ and let $B = k[y_1, y_2, y_3]/(y_1 + y_2 + y_3)$. Show that

$$A \otimes_k B \cong k[x_1, x_2, y_1, y_2, y_3]/(x_1^2 + x_2^2 + 1, y_1 + y_2 + y_3).$$

Here we use parenthesis for the ideal in the relevant ring generated by the parenthesized elements.

(167) Generalize Problems (165) and (166) to a statement whose form is: "Let R and S be commutative k-algebras, and I and J ideals of R and S respectively. Then $(R/I) \otimes_k (S/J)$ is isomorphic to ...".

A month ago, one of you asked what the coproduct is in the category of rings. We are now ready to answer that for commutative rings: For R and S commutative rings, the coproduct of R and S is $R \otimes_{\mathbb{Z}} S$. This means that, given any commutative ring T and any maps of rings $f : R \to T$ and $g : S \to T$, there is a unique map $h : R \otimes_{\mathbb{Z}} S \to T$ making the diagram below commute:



(168) Prove the above statement.