10. SOLVABLE GROUPS

Now that we have the Jordan-Holder theorem, we can start to classify groups according to what kind of factors appear in their composition/subnormal series. A basic example of this is the solvable groups:

Definition: A group G is called *solvable* if it has a subnormal series $1 = G_0 \trianglelefteq G_1 \trianglelefteq G_2 \trianglelefteq \cdots \trianglelefteq G_N = G$ such that G_j/G_{j-1} is abelian.

Problem 10.1. Show that S_3 and S_4 are solvable.

Problem 10.2. Show that a subgroup of a solvable group is solvable.

Problem 10.3. Show that a quotient group of a solvable group is solvable.

Problem 10.4. Show that, if $1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1$ is a short exact sequence, and A and C are solvable, then B is solvable.

Problem 10.5. Show that a finite group is solvable if and only if all its Jordan-Holder factors are cyclic of prime order.

There is a standard algorithm to test whether a group is solvable, using the *derived series*.

Definition: Let G be a group. The *commutator subgroup*, also called the *derived subgroup*, is the group generated by all products $ghg^{-1}h^{-1}$ for g and $h \in G$. It can be denoted D(G) or [G, G].

Problem 10.6. Show that D(G) is normal in G.

Problem 10.7. Show that G/D(G) is abelian.

Definition: The quotient G/D(G) is called the *abelianization* of G and denoted G^{ab} .

Problem 10.8. Prove the *universal property of the abelianization*: If G is a group, A is an abelian group and $\chi : G \to A$ is a group homomorphism, then there is a unique homomorphism $\phi : G^{ab} \to A$ such that the diagram below commutes:

Definition: The *derived series* of G is the chain of subgroups $G \ge D(G) \ge D(D(G)) \ge \cdots$. We'll denote the k-th group in this chain as $D_k(G)$.

Problem 10.9. Show that G is solvable if and only if there is some N for which $D_N(G) = \{e\}$.

Problem 10.10. (1) For $n \ge 2$, show that $S_n^{ab} \cong \{\pm 1\}$.

- (2) For $n \ge 5$, show that A_n^{ab} is trivial.
- (3) For $n \ge 5$, show that S_n is not solvable.