16. REVIEW OF POLYNOMIAL RINGS

Throughout this worksheet, let k be a field. Let k[x] be the ring of polynomials with coefficients in k. Here are some things that you hopefully know, and may use without proof.

• Let $b(x) \in k[x]$ be a nonzero polynomial of degree d. Let a(x) be any polynomial in k[x]. Show that there are unique polynomials q(x) and r(x), with $\deg r < d$, such that

$$a(x) = b(x)q(x) + r(x).$$

- The ring k[x] is Euclidean, is a PID and a UFD.
- If p(x) is an irreducible polynomial, then p(x)k[x] is a maximal ideal, and k[x]/p(x)k[x] is a field.

Problem 16.1. Let $b(x) \in k[x]$ be a nonzero polynomial of degree d. Show that the ring k[x]/b(x)k[x] is a k-vector space of dimension d.

Let K be a larger field containing k. For $\theta \in K$, we say that θ is **algebraic** over k if there is a nonzero polynomial f(t) in k[t] with $f(\theta) = 0$.

Problem 16.2. Let $\theta \in K$ be algebraic over k. Let $I \subset k[t]$ be $\{f(t) \in k[t] : f(\theta) = 0\}$.

- (1) Show that I = m(t)k[t] for some irreducible polynomial m.
- (2) Show that $k[\theta]$, meaning the subring of K generated by k and θ , is isomorphic to k[t]/m(t)k[t].

The polynomial m(t) is called the *minimal polynomial* of θ .

Problem 16.3. Let K be a larger field containing k. Let α and β be two algebraic elements of K which have the same minimal polynomial. Show that there is an isomorphism $k[\alpha] \to k[\beta]$ taking α to β .

Problem 16.4. Show that θ is algebraic over k if and only if $\dim_k k[\theta] < \infty$.

Problem 16.5. Show that the set of elements of K which are algebraic over k is a subfield of K.