Definition: Let k be a field, let f(x) be a polynomial in k[x] and let K be an extension field of f. We will say that f splits in K if f factors as a product of linear polynomials in K[x]. We say that K is a splitting field of f if f splits as a product $c \prod (x - \theta_j)$ in K[x] and the field K is generated by k and by the θ_j .

For example, if $k = \mathbb{Q}$ and $\theta_1, \theta_2, \ldots, \theta_n$ are the roots of f(x) in \mathbb{C} , then $\mathbb{Q}[\theta_1, \ldots, \theta_n]$ is a splitting field of f(x).

Problem 18.1. Let k be a field and let f(x) be a polynomial in k[x]. Show that f has a splitting field.

Problem 18.2. Let *L* be a splitting field for $x^3 - 2$ over \mathbb{Q} . Show that $[L : \mathbb{Q}] = 6$. (Hint: At one point, it will be very useful to use the fact that $\mathbb{Q}[\sqrt[3]{2}]$ is a subfield of \mathbb{R} .)

Problem 18.3. Let $L = \mathbb{C}(x_1, x_2, \dots, x_n)$. Let e_k be the k-th elementary symmetric polynomial and let $K = \mathbb{C}(e_1, e_2, \dots, e_n) \subset L$. Show that L is a splitting field for $x^n - e_1 x^{n-1} + e_2 x^{n-2} - \dots \pm e_n$ over K.

Problem 18.4. Let

$$f(x) = \left(x - \cos\frac{2\pi}{7}\right) \left(x - \cos\frac{4\pi}{7}\right) \left(x - \cos\frac{8\pi}{7}\right) = \frac{1}{8} \left(8x^3 + 4x^2 - 4x - 1\right).$$

I promise, and you may trust me, that f(x) is irreducible. Let $K = \mathbb{Q}(\cos \frac{2\pi}{7})$.

- (1) Show that $[K : \mathbb{Q}] = 3$.
- (2) Show that f(x) splits in K. Hint: Use the double angle formula.
- (3) Show that there is an automorphism $\sigma: K \to K$ with $\sigma(\cos \frac{2\pi}{7}) = \cos \frac{4\pi}{7}$.

Problem 18.5. Let k be a field and let f(x) be a polynomial in k[x]. Let K be a splitting field of f in which f splits as $\prod (x - \alpha_j)$. Let $\sigma : k \to L$ be a field homomorphism and let $\sigma(f) := \sum \sigma(f_j)x^j$ split in L. Show that there is an injection $\phi : K \to L$ making the diagram

commute. Hint: Think about $k \subseteq k[\alpha_1] \subseteq k[\alpha_1, \alpha_2] \subseteq \cdots \subseteq k[\alpha_1, \alpha_2, \ldots, \alpha_n] = K$.

Problem 18.6. Let k_1 and k_2 be two fields and let $\sigma : k_1 \to k_2$ be an isomorphism. Let $(x) = \sum f_j x^j$ be a polynomial in $k_1[x]$ and let $\sigma(f)(x) := \sum \sigma(f_j)x^j$. Let K_1 be a splitting field of f and let K_2 be a splitting field of $\sigma(f)$. Show that there is an isomorphism $K_1 \cong K_2$ making the diagram

commute.

Problem 18.7. Let k be a field and let f(x) be a polynomial in k[x]. Let K_1 and K_2 be two splitting fields of f. Show that there is an isomorphism $K_1 \cong K_2$ making the diagram

commute. So splitting fields are unique.