1. SYMMETRIES OF POLYNOMIALS

Let S_n be the group of permutations of 1, 2, ..., n. For two permutations σ and τ , we will write either $\sigma \circ \tau$ or $\sigma\tau$ for the composition: $(\sigma\tau)(j) := \sigma(\tau(j))$. We will often write permutations using cycle notation: $(i_1i_2 \cdots i_k)$ means the permutation which cycles $i_1 \mapsto i_2 \mapsto \cdots \mapsto i_k \mapsto i_1$ and fixes everything not in $\{i_1, i_2, \ldots, i_k\}$. We will let S_n act on the ring of polynomials $\mathbb{C}[r_1, \ldots, r_n]$ in the obvious way. Set

$$
\Delta = \prod_{i < j} (r_i - r_j).
$$

Problem 1.1. (1) For any permutation σ in S_n , show that $\sigma(\Delta^2) = \Delta^2$. (2) For any permutation σ in S_n , show that $\sigma(\Delta) = \pm \Delta$.

Let $\omega = \frac{-1 + \sqrt{-3}}{2}$ $\frac{2}{2}$. When we studied the cubic formula, we set

$$
P = r_1 + \omega r_2 + \omega^2 r_3.
$$

Let A_3 be the subgroup $\{e, (123), (123)^2\}$ of S_3 .

- **Problem 1.2.** (1) For any permutation $\sigma \in A_3$, show that $\sigma(P^3) = P^3$.
	- (2) For any permutation $\sigma \in A_3$, show that $\sigma(P) = \omega^k P$ for some integer k.

We set
$$
\epsilon(\sigma) = \frac{\sigma(\Delta)}{\Delta}
$$
, so $\epsilon(\sigma) \in \{\pm 1\}$. For $\sigma \in A_3$, we set $\eta(\sigma) = \frac{\sigma(P)}{P}$, so $\eta(\sigma) \in \{1, \omega, \omega^2\}$.

Problem 1.3. Show that $\epsilon(\sigma\tau) = \epsilon(\sigma)\epsilon(\tau)$, for σ and $\tau \in S_n$. Show that $\eta(\sigma\tau) = \eta(\sigma)\eta(\tau)$, for σ and $\tau \in A_3$.

We generalize these two examples. Let f be a nonzero polynomial in $\mathbb{C}[r_1, r_2, \ldots, r_n]$ and let m be a positive integer. Define

$$
G = \{ \sigma \in S_n : \sigma(f^m) = f^m \} \qquad H = \{ \sigma \in S_n : \sigma(f) = f \}.
$$

Problem 1.4. (1) For $\sigma \in G$, define $\chi_f(\sigma) = \frac{\sigma(f)}{f}$. Show that $\chi_f(\sigma)$ is an m-th root of unity in \mathbb{C}^* . (2) Show that G and H are subgroups of S_n .

(3) Show that, for σ and $\tau \in G$, we have $\chi_f(\sigma \tau) = \chi_f(\sigma) \chi_f(\tau)$.

Here are polynomials related to the quartic formula:

	$_{\boldsymbol{rm}}$
$T = r_1 + r_2 - r_3 - r_4$	
$U = r_1 - r_2 + r_3 - r_4$	T 72
$V = r_1 - r_2 - r_3 + r_4$	V2
$T + \omega U + \omega^2 V$	$(T+\omega U+\omega^2 V)^3$

Problem 1.5. For each of the polynomials in the table above, describe G , H and χ_f .