22. ARTIN'S LEMMA

The following problem was on the problem sets, check that everyone knows how to solve it:

Problem 22.1. Let *L* be a field, let *H* be a group of automorphisms of *L* and let F = Fix(H), the elements of *L* fixed by *H*. Suppose that *V* is an *L*-vector subspace of L^n and that *H* takes *V* to itself. Show that *V* contains a nonzero element of F^n .

One of several results called Artin's Lemma: Let *L* be a field, let *H* be a finite group of automorphisms of *L* and let F = Fix(H), the elements of *L* fixed by *H*. Then [L : F] = #(H) and H = Aut(L/F).

Throughout this worksheet, let L, H and F be as above.

Problem 22.2. Show that $\#(H) \leq [L:F]$. This is just quoting something you've already done.

Suppose for the sake of contradiction that there are n > #(H) elements $\alpha_1, \alpha_2, \ldots, \alpha_n \in L$ which are linearly independent over F. Define

$$V = \left\{ (c_1, c_2, \dots, c_n) \in L^n : \sum_j c_j h(\alpha_j) = 0 \ \forall h \in H \right\}.$$

Problem 22.3. Show that V is an L-vector subspace of L^n and that H takes V to itself.

Problem 22.4. Show that $\dim_L V > 0$.

Problem 22.5. Deduce a contradiction, and explain why you have proved [L:F] = #(H).

Problem 22.6. Show that $H = \operatorname{Aut}(L/F)$.

Artin's Lemma gives us a wide source of Galois extensions:

Problem 22.7. Let L, H and F be as in Artin's Lemma. Show that [L : F] is Galois.