## 23. KUMMER'S THEOREM AND GALOIS'S CRITERION FOR RADICAL EXTENSIONS

We showed that, if we adjoin elements to a field by taking m-th roots, we will never leave the solvable fields. On this worksheet, we will prove a converse.

Here is the set up for problems 23.1 through 23.4: Let K be a field where  $n \neq 0$  and let  $\zeta \in K$  be a primitive *n*-th root of unity. Let L/K be a Galois extension with  $Gal(L/K) \cong C_n$  and let g generate Gal(L/K).

**Problem 23.1.** Show that, as a *K*-vector space, *L* splits up as  $\bigoplus_{j=0}^{n-1} L_j$  where  $L_j := \{x \in L : g(x) = \zeta^j x\}$ .

**Problem 23.2.** With notation as in the previous problems, let  $\alpha \in L_j$  and  $\beta \in L_k$ . Show that  $\alpha \beta \in L_{j+k}$ .

**Problem 23.3.** Suppose for the sake of contradiction that, for some j, we have dim  $L_j \ge 2$ .

- (1) Show that  $L_0 \supseteq K$ .
- (2) Deduce a contradiction, and conclude that dim  $L_j = 1$  for all  $j \in \mathbb{Z}/n\mathbb{Z}$ .

**Problem 23.4.** Let  $\alpha \in L_1$  and put  $\theta = \alpha^n$ . Show that  $L = K(\alpha) \cong K[x]/(x^n - \theta)K[x]$ .

**Theorem (Kummer's Theorem):** Let K be a field where  $n \neq 0$  and suppose that K contains a primitive *n*-th root of unity. Let L/K be a Galois extension whose Galois group is cyclic of order n. Then  $L = K(\theta^{1/n})$  for some  $\theta \in K$ .

**Problem 23.5.** Let L/F be a Galois extension with solvable Galois group of order N. Suppose that  $N \neq 0$  in F and  $x^N - 1$  splits in F. Show that there is a chain of subfields  $F = K_0 \subset K_1 \subset \cdots \subset K_r = L$  where  $K_{j+1} = K_j(\theta_j^{1/d_j})$  for some  $\theta_j \in K_j$  and some  $d_j$  dividing N.

**Problem 23.6.** Let L/F be a Galois extension with solvable Galois group of order N. Suppose that  $N \neq 0$  in F. Show that there is a chain of subfields  $F \subseteq K_0 \subset K_1 \subset \cdots \subset K_r \supseteq L$  where  $K_0 = F(\zeta_N)$  and  $K_{j+1} = K_j(\theta_j^{1/d_j})$  for some  $\theta_j \in K_j$  and some  $d_j$  dividing N. (See diagram below.) You have proved:



**Theorem (Galois's characterization of equations solvable by radicals):** Let  $\theta$  be algebraic over  $\mathbb{Q}$  and let *L* be the Galois closure of  $\mathbb{Q}(\theta)$ . There is a formula for  $\theta$  using  $+, -, \times, \div, \sqrt[d]{}$  if and only if  $\operatorname{Gal}(L/\mathbb{Q})$  is solvable.

Finally, we apply this to study constructible numbers again:

**Problem 23.7.** Let F be a field of characteristic  $\neq 2$ . Let L/F be a Galois extension with Galois group of order  $2^r$ . Show that there is a chain of fields  $F = K_0 \subset K_1 \subset \cdots \subset K_r = L$  such that  $K_{i+1} = K_i(\sqrt{\theta_i})$  for  $\theta_i \in K_i$ . You have proved:

**Theorem:** Let  $\theta$  be algebraic over  $\mathbb{Q}$  and let L be the Galois closure of  $\mathbb{Q}(\theta)$ . There is a formula for  $\theta$  using  $+, -, \times, \div, \sqrt{}$  if and only if  $\operatorname{Gal}(L/\mathbb{Q})$  is a 2-group.