2. CHARACTERS OF THE SYMMETRIC AND ALTERNATING GROUPS

We recall the map $\epsilon : S_n \to \{\pm 1\}$, defined by $\epsilon(\sigma) = \frac{\sigma(\prod(r_i - r_j))}{\prod(r_i - r_j)}$. You showed that $\epsilon(\sigma\tau) = \epsilon(\sigma)\epsilon(\tau)$. This means that ϵ is an example of a *character*:

Let G be a group. A *character* of G is a map $\chi : G \to \mathbb{C}^*$ obeying $\chi(gh) = \chi(g)\chi(h)$. The *kernel* of χ is $\{g \in G : \chi(g) = 1\}$. We define the *alternating group*, A_n , to be the kernel of ϵ .

Problem 2.1. Which of the following permutations are in A_4 :

Id, (12), (123), (12)(34), (1234)?

Two elements, g and h of G, are called *conjugate*, if there is an element $c \in G$ with $h = cgc^{-1}$.

Problem 2.2. Let g and h be conjugate and let $\chi : G \to \mathbb{C}^*$ be a character. Show that $\chi(g) = \chi(h)$.

A *transposition* is a permutation of the type (ij). A 3-cycle is a permutation of the type (ijk).

Problem 2.3. Let (ij) and $(k\ell)$ be two transpositions in S_n . Show that (ij) and $(k\ell)$ are conjugate.

Problem 2.4. Let $n \ge 5$ and let (ijk) be a 3-cycle in A_n . Show that (ijk) and $(ijk)^{-1}$ are conjugate in A_n , meaning that there is a permutation $c \in A_n$ with $c(ijk)c^{-1} = (ijk)^{-1}$.

Problem 2.5. (1) Show that any permutation in S_n is a product of transpositions.

(2) Show that any permutation in A_n is a product of 3-cycles.

Problem 2.6. Let $\chi : S_n \to \mathbb{C}^*$ be a character.

- (1) Show that either $\chi((ij)) = 1$ for all transpositions $(ij) \in S_n$ or else $\chi((ij)) = -1$ for all transpositions $(ij) \in S_n$.
- (2) Show that either $\chi(g) = 1$ for all permutations $g \in S_n$ or else $\chi(g) = \epsilon(g)$ for all permutations $g \in S_n$.

Problem 2.7. Let $\chi : A_n \to \mathbb{C}^*$ be a character.

- (1) Show that, for every 3-cycle (ijk), we have $\chi((ijk)) \in \{1, \omega, \omega^2\}$.
- (2) Assuming that $n \ge 5$, show that, for all 3-cycles (ijk), we have $\chi((ijk)) = 1$.
- (3) Assuming that $n \ge 5$, show that, for all $g \in A_n$, we have $\chi(g) = 1$.