3. A WEAK VERSION OF UNSOLVABILITY OF THE QUINTIC

One of the highlights of this course will be the proof of the unsolvability of the quintic. This worksheet proves a weaker version of this result.

Let L be the field of rational functions $\mathbb{C}(r_1, r_2, \ldots, r_n)$. Define e_1, e_2, \ldots, e_n as the coefficients of the polynomial:

$$(x-r_1)(x-r_2)\cdots(x-r_n) = x^n - e_1 x^{n-1} + e_2 x^{n-2} - e_3 x^{n-3} + \cdots \pm e_n$$

Theorem (Ruffini): Starting from e_1, e_2, \ldots, e_n , it is impossible to obtain the elements r_1, r_2, \ldots, r_n of L by the operations $+, -, \times, \div, \sqrt[n]{}$, under the condition that, every time we take an n-th root, we must stay in L.

At any point in the computation, there will be some list of elements of L which we have computed so far. Call them $\theta_1, \theta_2, \theta_3, \ldots$ where each θ_k is either

- (1) An element of $\mathbb{C}(e_1, \ldots, e_n)$.
- (2) Of the form $\theta_i + \theta_j$, $\theta_i \theta_j$, $\theta_i \times \theta_j$ or θ_i / θ_j , for i, j < k.
- (3) Of the form $\sqrt[n]{\theta_j}$ for j < k.

Let G_j be the subgroup of S_n fixing $\theta_1, \theta_2, \ldots, \theta_j$.

Problem 3.1. (1) If $\theta_k \in \mathbb{C}(e_1, \dots, e_n)$, show that $G_k = G_{k-1}$.

- (2) If θ_k is of the form $\theta_i + \theta_j$, $\theta_i \theta_j$, $\theta_i \times \theta_j$ or θ_i/θ_j , for i, j < k, show that $G_k = G_{k-1}$.
- (3) If θ_k is of the form $\sqrt[n]{\theta_j}$ for j < k, show that there is a character $\chi : G_{k-1} \to \mathbb{C}^*$ with kernel G_k .

Deleting the duplicate groups, we obtain a chain of subgroups

$$S_n = G_0 \supsetneq G_1 \supsetneq G_2 \supsetneq \cdots$$

such that, for each $k \ge 1$, there is a character $\chi : G_{k-1} \to \mathbb{C}^*$ with kernel G_k .

Problem 3.2. Let $n \ge 2$. Show that the first step of the chain must be $S_n \supseteq A_n$.

Problem 3.3. Let $n \ge 5$. Show that the chain ends at A_n .

Problem 3.4. Prove Ruffini's Theorem!