6. NORMAL SUBGROUPS, QUOTIENT GROUPS, SHORT EXACT SEQUENCES

Problem 6.1. Let G be a group and let N be a subgroup. Show that the following are equivalent:

- (1) For all $g \in G$, we have $gNg^{-1} = N$.
- (2) N is a union of (some of the) conjugacy classes of G.
- (3) All elements of G/N have the same stabilizer, for the left action of G on G/N.
- (4) Every left coset of N in G is also a right coset.
- (5) If $g_1N = g_1'N$ and $g_2N = g_2'N$, then $g_1g_2N = g_1'g_2'N$.

Definition: A subgroup N obeying the equivalent conditions of Problem 6.1 is called a **normal subgroup** of G. We write $N \subseteq G$ to indicate that N is a normal subgroup of G.

Problem 6.2. Let G be S_3 . Which of the following subgroups are normal?

- (1) The subgroup generated by (12).
- (2) The subgroup generated by (123).

Problem 6.3. Let G be a group and let N be a normal subgroup of G.

- (1) Prove or disprove: Let $\alpha: F \to G$ be a group homomorphism. Then $\alpha^{-1}(N)$ is normal in F.
- (2) Prove of disprove: Let $\beta: G \to H$ be a group homomorphism. Then $\beta(N)$ is normal in H.
- (3) At least one of the statements above is false. Find an additional hypothesis you could add to make it true.

Definition: Given a group G and a normal subgroup N, the *quotient group* G/N is the group whose underlying set is the set of cosets G/N with multiplication such that $(g_1N)(g_2N) = g_1g_2N$.

This definition makes sense by Part (4) of Problem 6.1. I won't make you check that this is a group, but do so on your own time if you have any doubt. Also, I won't make you check this, but the groups G/N and $N\backslash G$, defined in the obvious ways, are isomorphic.

Let $\phi:G\to H$ be a group homomorphism. Recall that the image and kernel of ϕ are $\mathrm{Ker}(\phi):=\{g\in G: \phi(g)=1\}$ and $\mathrm{Im}(\phi):=\{\phi(g):g\in G\}$.

Problem 6.4. Show that the kernel of ϕ is a normal subgroup of G.

Problem 6.5. Show that the "obvious" map from $G/\operatorname{Ker}(\phi)$ to $\operatorname{Im}(\phi)$ is an isomorphism.

We often discuss quotients using the language of short exact sequences:

Definition: A *short exact sequence* $1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1$ is three groups A, B and C, and two group homomorphisms $\alpha: A \to B$ and $\beta: B \to C$ such that α is injective, β is surjective, and $\mathrm{Im}(\alpha) = \mathrm{Ker}(\beta)$.

I will occasionally write 0 instead of 1 at one end or the other of a short exact sequence. I do this when the adjacent group (meaning A or C) is abelian and it would feel bizarre to denote the identity of that abelian group as 1.

We'll write C_n for the abelian group $\mathbb{Z}/n\mathbb{Z}$. This is called the *cyclic group* of order n.

Problem 6.6. Show that there is a short exact sequence $1 \to C_m \to C_{mn} \to C_n \to 1$.

Problem 6.7. Show that there is a short exact sequence $1 \to C_3 \to S_3 \to S_2 \to 1$.

Problem 6.8. Show that there is a short exact sequence $1 \to C_2^2 \to S_4 \to S_3 \to 1$.