Definition: A *subnormal series* of a group G is a chain of subgroups $G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft G_3 \triangleleft \cdots \triangleleft G_N \subseteq G$ where G_{i-1} is normal in G_i . A *composition series* is a subnormal series where $G_0 = \{e\}, G_N = G$ and each subquotient G_j/G_{j-1} is simple. A quasi-composition series is a composition series where $G_0 = \{e\}, G_N = G$ and each subquotient is either simple or trivial.

Problem 8.1. Show that a group which has a quasi-composition series has a composition series.

Problem 8.2. Show that every finite group has a composition series.

Problem 8.3. Show that S_4 has a composition series with subquotients C_2 , C_2 , C_3 and C_2 .

Problem 8.4. Show that $GL_2(\mathbb{F}_7)$ has a composition series with subquotients C_2 , $PSL_2(\mathbb{F}_7)$, C_2 and C_3 . You may assume that $PSL_2(\mathbb{F}_7)$ is simple. (For a field of characteristic $\neq 2$, the group $PSL_2(F)$ is $SL_2(F)/\pm Id$. See the worksheet on simple groups for the definition of $PSL_n(F)$ in general.)

Problem 8.5. Let $1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1$ be a short exact sequence, and let $\{1\} = A_0 \subset A_1 \subset \cdots \subset A_1 \subset A_1 \subset \cdots \subset A_1 \subset A_1 \subset A_1 \subset \cdots \subset A_1 \subset A_1$ $A_a = A$ and $\{1\} = C_0 \subset C_1 \subset \cdots \subset C_c = C$ be composition series of A and C. Show that

 $\{1\} = \alpha(A_0) \subset \alpha(A_1) \subset \cdots \subset \alpha(A_a) = \beta^{-1}(C_0) \subset \beta^{-1}(C_1) \subset \cdots \subset \beta^{-1}(C_c) = B$

is a composition series for B.

Problem 8.6. Let $1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1$ be a short exact sequence and let $\{1\} = B_0 \subset B_1 \subset \cdots \subset B_1 \subset C_1 \subset C$ $B_b = B$ be a composition series of B.

- (1) Show that {1} = α⁻¹(B₀) ⊆ α⁻¹(B₁) ⊆ ··· ⊆ α⁻¹(B_b) = A is a quasi-composition series for A.
 (2) Show that {1} = β(B₀) ⊆ β(B₁) ⊆ ··· ⊆ β(B_b) = C is a quasi-composition series for C.

We are setting up to prove the Jordan-Holder theorem for groups. Here is a useful lemma.

Problem 8.7. Let $1 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 1$ be a short exact sequence and let B' be a normal subgroup of B. Set $A' = \alpha^{-1}(B)$ and $C' = \beta(B)$. You might find it useful to think of A as a subgroup of B, and A' as $A \cap B'$.

- (1) Show that $1 \to A' \to B' \to C' \to 1$ is a short exact sequence.
- (2) Show that $1 \to A/A' \to B/B' \to C/C' \to 1$ is a short exact sequence.