9. THE JORDAN-HOLDER THEOREM

We recall the definitions from last time:

Definition: A *subnormal series* of a group G is a chain of subgroups $G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft G_3 \triangleleft \cdots \triangleleft G_N \subseteq G$ where G_{j-1} is normal in G_j . A *composition series* is a subnormal series where $G_0 = \{e\}$, $G_N = G$ and each subquotient G_j/G_{j-1} is simple. A *quasi-composition series* is a composition series where $G_0 = \{e\}$, $G_N = G$ and each subquotient is either simple or trivial.

Let G be a group with a composition series $\{e\} = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_N = G$. We define N to be the length of the composition series and write $N = \ell(G)$. For a simple group Γ and a composition series G_{\bullet} , we define $m(G_{\bullet}, \Gamma)$ to be the number of quotients G_j/G_{j-1} which are isomorphic to Γ . Our aim today is to prove

Theorem (Jordan-Holder): Let G be a group and let G_{\bullet} and G'_{\bullet} be two composition series for G. Then $\ell(G_{\bullet}) = \ell(G'_{\bullet})$ and, for any simple group Γ , we have $m(G_{\bullet}, \Gamma) = m(G'_{\bullet}, \Gamma)$.

Let $1 \to A \xrightarrow{\alpha} B \to \xrightarrow{\beta} C \to 1$ be a short exact sequence of groups. Let B_{\bullet} be a composition series for B. Recall that we proved on the previous worksheet that $\{1\} = \alpha^{-1}(B_0) \subseteq \alpha^{-1}(B_1) \subseteq \cdots \subseteq \alpha^{-1}(B_b) = A$ is a quasi-composition series for A and $\{1\} = \beta(B_0) \subseteq \beta(B_1) \subseteq \cdots \subseteq \beta(B_b) = C$ is a quasi-composition series for C.

Problem 9.1. With the above notations, let A_{\bullet} and C_{\bullet} be the composition series obtained from deleting duplicate entries from the quasi-composition series above.

- (1) Show that $\ell(B_{\bullet}) = \ell(A_{\bullet}) + \ell(C_{\bullet})$.
- (2) For any simple group Γ , show that $m(B_{\bullet}, \Gamma) = m(A_{\bullet}, \Gamma) + m(C_{\bullet}, \Gamma)$.

At this point, you have enough to prove the Jordan-Holder theorem for finite groups, by induction on #(G).

Problem 9.2. Check the base case: Jordan-Holder holds for the trivial group.

Problem 9.3. Check also that Jordan-Holder holds for simple groups.

Problem 9.4. Suppose that G is a finite group which is neither simple nor trivial, and suppose that Jordan-Holder holds for all groups of size less than #(G). Show that Jordan-Holder holds for G. This completes the induction, for $\#(G) < \infty$.

The Jordan-Holder theorem is also true for infinite groups that have composition series! Proving this requires no big new ideas, but a little more finesse. Define $L(G) = \min \ell(G_{\bullet})$, where the minimum is over all composition series for G. Note L(G) = 0 if and only if G is trivial, and L(G) > 0 for any nontrivial G.

Problem 9.5. Check that L(G) = 1 if and only if G is simple.

Problem 9.6. Let $1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$ be a short exact sequence of groups.

- (1) Show that $L(B) \ge L(A) + L(C)$.¹
- (2) If A and C are nontrivial, show that L(B) > L(A) and L(B) > L(C).

Problem 9.7. Prove the Jordan-Holder theorem by induction on L(G).

¹In fact, equality holds and you have the tools to show it, but you don't need this.