B. FINITE NILPOTENT GROUPS ARE PRODUCTS OF *p*-GROUPS.

Today's goal is to show:

Theorem: Let G be a finite group. Then G is nilpotent if and only if it is a direct product of p-groups.

Problem B.1. Show the easy direction: A direct product of p-groups is nilpotent.

From now on, let G be a finite nilpotent group with $\#(G) = \prod p_i^{k_i}$. We will be proving, by induction on #(G), that G is the direct product of its Sylow subgroups.

Problem B.2. Show that G has a central subgroup Z which is cyclic of prime order.

Let G'=G/Z, so we have a short exact sequence $1\to Z\to G\xrightarrow{\beta} G'\to 1$. Let P_i' be a p_i -Sylow of G'. **By induction,** $G'=\prod_i P_i'$. We number the prime factors of #(G) such that $\#(Z)=p_1$. We analyze the Sylows of G, starting with the p_1 -Sylow, and then the others.

Problem B.3. (1) Show that $\beta^{-1}(P_1')$ is normal in G.

(2) Show that $\beta^{-1}(P_1)$ is a p_n -Sylow of G.

Problem B.4. Now, let i > 1. We have a short exact sequence $1 \to Z \to \beta^{-1}(P_i') \to P_i' \to 1$.

- (1) Show that $\beta^{-1}(P'_i)$ is normal in G.
- (2) Show that the p_i -Sylow of $\beta^{-1}(P_i)$ is also a p_i -Sylow of G.
- (3) Show that $\beta^{-1}(P_i') \cong Z \times P_i'$ (here is where you use Schur-Zassenhaus).
- (4) Show that the p_i -Sylow of $\beta^{-1}(P_i')$ is a characteristic subgroup of $\beta^{-1}(P_i')$.
- (5) Show that the p_i -Sylow of G is normal in G.

We have now shown that every Sylow subgroup of G is normal in G.

Problem B.5. Conclude by proving that G is the direct product of its Sylow subgroups.